THE GENERALIZED USE OF INTEGRATED MAGNETICS

AND ZERO-RIPPLE TECHNIQUES IN SWITCHMODE POWER CONVERTERS

Gordon (Ed) Bloom

e/J BLOOM associates

Abstract

Methods are presented that allow the
discrete transformers and inductors of
switchmode power converters to be unified
in single magnetic structures. It is
demonstrated that unified magnetics and
zero ripple operation are general
phenomena applicable to all types of
switchmode power converters.

1 INTRODUCTION

Seemingly, a day does not pass now
without an announcement of a new advance
in microcircuit technology, bringing us
closer to the age of ultra mininaturation
of electronic products. For those of us
who must design and develop power
processing systems it is a time of
frustration and reflection, for as
product sizes shrink, so must their power
conditioners.

Twenty-five years ago, when the sizes of
electronic systems were measured in terms
of room dimensions, their power supplies
could afford to be large. Today, with
electronic products, such as calculators
smaller than the dial of a watch, the
power supply subsystems are often as
large or larger than the electronics.
Another example is the personal computer,
where power supply areas often occupy up
to 50% of enclosure volume, with a cost
approaching 45% of product price.

In a concerted effort to reduce power
supply sizes, recent years have seen
switchmode conversion and processing
designs pushed higher and higher in
operating frequency. Theoretically, at
least, converters with high switching
rates implies that their circuits will
have smaller magnetic components. There
are however, very practical limits to the
size reduction obtainable from high
frequency operation [1].
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There is little disagreement among power
converter designers that the magnetic
parts of any switchmode design are the
major contributors to supply cost,
weight, and size. For these reasons, it
is not uncommon for designers to select
converter approaches that have a minimum
magnetic content, even though, in many
cases, one with more magnetic components
would be more suitable from an overall
circuit performance standpoint.

Realizing that moving to higher switching
frequencies to reduce magnetic size has
practical boundaries, designers are now
turning to another avenue of
investigation - magnetic integration.
This rather innovative-sounding, but
accurate, term is used to describe
magnetic design techniques whereby
various inductive and transformer
elements of a power converter can be
combined on a single core structure.

If one accepts the above definition of
magnetic integration as applied to
switchmode DC-to-DC power converters,
then two converter topologies can be
readily identified as integrated magnetic
circuits, namely, the buck-boost-derived
flyback converter and a special variation
of the "boost-buck-derived" 'Cuk
converter'([2].

Both of these circuits, together with
their discrete magnetic counterparts, are
shown in the lower portions of Figure 1.
In the case of the flyback converter, the
required inductance for energy storage is
simply "built-into" the isolation
transformer by proper choice
magnetization inductance. Thus, the
transformer of the flyback converter
serves two important purposes - as an
isolation element for input and output
grounds and as a means of primary energy
storage for supplying load power needs.
In the case of the integrated-magnetic
version of the transformer-isolated 'Cuk
Converter, its single magnetic houses all
inductive functions of the converter and,
by selecting proper amounts of mutual
inductance that exist between windings,
input and output ripple current
magnitudes can be controlled, and even be
reduced to zero in special instances [3]!
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Both the buck-boost converter and its
dual circuit, the 'Cuk converter, can be
evolved from the appropriate cascade
arrangements of basic buck and boost
circults, as demonstrated in [2]. It is
interesting to note that integrated-
magnetic versions of isolated buck-boost
and Cuk converters are perfectly feasible
and well-documented circuit
possibilities, but little is publicly
known about similar integration methods
for transformer-isolated versions of
their parent circuits, as visually
emphasized by the vacant sections of
Figure 1.

In this paper, we will explore design
techniques for the integration of the
transformer and inductive components of
buck and boost-derived converter
topologies. To set the stage for this
examination, a brief introductory section
on basic electromagnetic modeling and
analysis is included. Discussions of
magnetic integration of the inductive
components of a forward converter are
then presented, with extensions for
reducing the output ripple current
significantly by external means. By
duality integrated-magnetic boost
converter circuits are then evolved and
extensions illustrated for input ripple
current reductions.

Integrated-magnetic "push-pull"™ DC-to-DC
converter structures are then examined,
including one based on a special
variation of the Weinberg circuit.
Results of laboratory tests of a
representative integrated magnetic
converter are then shown, followed by.
discussions of small-signal averaged
modeling for stability and control
analysis.

2 TOOLS FOR MAGNETIC CIRCUIT MODELING

Integrated magnetics for converters
brings to mind a picture of magnetic
structures that are highly complex and
unwieldly from design, analysis, and
construction viewpoints. To some degree,
this concern is understandable, for most
engineers today are only familiar with
magnetic design methods that address
inductors and transformers as individual
converter components. Just the thought
of having to deal with a magnetic
assembly with more than one major flux
path is often a deterrent to an engineer
to attempt such a design.

The attitude of designers in this regard
is now changing. However, for many
converter designers, the tools to proper
design and model integrated-magnetic
components have been unused over the
years. Thus, before beginning the
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exploration of integrated-magnetic buck
and boost converters, it is worthwhile to
digress briefly and review some not-so-
familiar electromagnetic fundamentals and
magnetic circuit modeling methods using
electric circuit analogs. For those
readers interested in a more
comprehensive review than the one to
follow, reference [4] is highly
recommended.

Recall that the similarity between
Kirchoff's voltage and current laws for
linear electric circuits and Ampere's
circuital laws related to magnetomotive
force and flux continuity in linear
magnetic circuits permit the use of
electric circuit analogs for analysis
purposes. Such analysis makes voltage,
v, analogous to magnetic potential F;
current, 1, analogous to magnetic flux,
#; electrical resistance, R, analogous to
magnetic reluctance, R. Furthermore,
because the electric circuits derived by
the use of these analogs are linear, they
can be manipulated into even more useful
forms by established duality
relationships [5]. Transformation by
duality then produces electric circuit
models that relate magnetic reluctances,

R's, to inductances, L's; flux linkages
in windings, \'s, to voltages, v's; and
flux levels in magnetic paths, @'s, to

currents, i's.

The rate of change of flux with time
within a coil of wire (with or without a
ferromagnetic core) of N turns can be

related to A , as:
_dh A dg _ l di (1
v dt dt dt )

by Lenz's and Faraday's Law. As shown in
(1), a similar relationship can be stated
in terms of the inductance (L) of the
coil and the instantaneous current (1)
thru it. In the case of a single coil of
wire, is the measure of flux linkage
within the core produced by self-
induction. 1In an instance where there
are multiple coils with common magnetic
paths, the total flux linkage of one coil
would be the sum of that produced by
self-induction plus those produced by
mutual interaction, or mutual induction,
with the others.

The magnetomotive force, F, of an excited
coil of wire (with or without a
ferromagnetic core) is defined as the
product of the instantaneous current
through it, i, and the number of turns,
N, of the coil. In equation form, F can
be directly related to magnetizing force,
H, and its magnetic path length, 1, as:

(2)
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The self-inductance, L, of a single coil
of wire of N turns, can be equated to the
rate of change of flux with current from

(1) as:
L =N %g (3)

Assuming that a linear relationship
between flux level and magnetizing force
is always maintained, R can be defined as
the ratio of a change in F produced by a
change in 0. From (2) and (3),
reluctance can be expressed in terms of
inductance as:
. 2
R:dF:Nd1=.’\l. (4)
@ @ T

Reluctance can also be expressed in terms
of related magnetic path length, cross-
sectional area of the magnetic material,
Ac, and the permeability, u, of the path
in question. If Ac is uniform in value
throughout the path, then:

1

R=—=

(5)
MAc

o| —

where P is defined as material permeance,
the reciprocal element of reluctance.

In magnetic circuits, arrows are used to
indicate the assumed directions of
winding currents, rather than polarity
marks for magnetomotive forces (often
shortened to "mmfs"). The most popular
method for determining flux direction 1is
the "right-hand rule" illustrated in
Figure 2(a). With the right hand
positioned as shown, the flux direction
will be indicated by the direction of the
curvature of the fingers. Note that the
thumb must be pointed in the assumed
direction of winding current when making
this determination.

In representing multi-winding magnetic
circuits in electric circuit diagrams, it
is customary to use dot notation to
convey the voltage polarity relationships
of each winding relative to the others,
as shown in Figure 2(b). Three basic
rules are followed in the "dotting" of
windings:

RULE 1. Voltages induced in any two
windings due to changes in mutual flux
will have the same polarity at "dot-

marked" terminals.
RULE 2. 1If positive currents flow into
the "dot-marked" terminals of related

windings, then the mmf's produced in each
winding will have additive polarity.
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Figure 2 Determining flux directions (a), and
dotting of windings ?b).

RULE 3. If any related winding is open-
circuited, and if the currents flowing
into the "dot-marked" terminals have a
positive rate of change, then the voltage
induced in the open winding will be
positive at its "dot-marked" terminal.

When a magnetic circuit arrangement has
more than two windings and contains more
than one major flux path, then multiple
"dotting" windings is necessary to
visually express voltage polarities.
However, this is easily done by the use
of the right hand rule and the three
dotting rules given above. An example of
multiple "dotting" is shown in Figure
2(b), where three sets of "dots" are
needed to express winding polarities
relative to each one of the three
windings of the magnetic.

2.1 A Magnetic Circuit Modeling Example
All of the fundamental definitions
related to magnetic circuits given above,
when combined with the techniques of
electric circuit modeling and duality,
produce a powerful set of analysis tools
for guick and accurate examination of any
magnetic circuit arrangement, no matter
how complex it may be. The electric
circuit models that result are just that
- circuit models - and do not depend on
abstract mathematical relationships (such
as mutual inductance expressions) for
performance evaluations.



As an illustration of the power of these
modeling techniques, consider now an
example. For this exercise, we will
derive an electric circuit model for a
two-winding transformer with parasitic
leakage inductances, as shown in Figure
3(a). Here, an ungapped toroidal core
provides the major magnetic path between
windings (fy), and each winding has a
leakage path (41, 92) for flux that is
not contained in the material path. We
will assume for this exercise that the
core's cross-sectional area is uniform
throughout its body, and that a mean path
length can be used to define the
reluctance of the core.

If we designate N, as the primary
exciting winding, we can first determine
the voltage polarity of the secondary
winding using the right-hand rule. With
a primary current direction and the
winding dotted as shown in Figure 3(a),
fluxes @), and g, must have positive
directions as indicated in this figure.
The dot for the secondary therefore must
be at the top of this winding to produce
a flux in the same direction as @y

With winding polarities established, we
note that the secondary voltage, vgrs must
have a polarity as shown, for the given
polarity of exciting voltage, vg-

Because the resulting secondary current
is "out of the dot", we also note from
our earlier transformer rules that this
current, igrs will produce an mmf that
opposes that of the primary.

Next, we draw the equivalent magnetic
circuit diagram for the arrangement of
Figure 3(a). This is done in Figure
3(b), using the analogous relationships
defined earlier. Note that @, and 7
have the same polarity in the primary
winding, since they are caused by ig-
however, in the secondary winding, 9m
@, have opposite polarity,
() produces iy while the other
a consequence of ig-

and
since one flux

(2p) is

From the magnetic circuit of Figure 3(b),
we can now develop a dual permeance
network for it, resulting in the
equivalent circuit of Figure 3(c). Our
next step is to scale the network of
Figure 3(c) by the number of turns of the
winding we select as reference for the
final electric circuit representation.
This is accomplished in Figure 3(d). The
major purpose of this scaling step is to
place all circuit permances in a form
that can be directly related to
inductance. Note that the scaled model
of Figure 3(d) also permits easy
conversion of flux linkages to primary
and secondary voltage values.
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Figure 3 Developing reluctance and permeance
circuit models for a two-winding transformer
with leakage fluxes.

Finally, we convert the scaled permeance
network to one involving voltages and
inductances. This conversion is shown
in Figure 4(a). Note that we have added
an ideal transformer to this network to
properly scale terminal secondary voltage
and current values. Using impedance
translation methods, we can also "move"
all or some primary inductances to the
secondary side of the final electric
circuit model if desired. Two versions
of such impedance movements are shown in
Figures 4(b) and 4(c).

In just four easy steps, we have been
able to develop a realistic electric
circuit model for a somewhat complex
magnetic circuit arrangement. Note that
the final models of Figure 4 do not
involve mutual inductances and are in a
form that a designer can easily relate
physical properties of the corresponding
magnetic system of Figure 3(a) to
familiar electric circuit quantities.

Looking at Figure 4(c), we see that
inductances L} and Lp represent those



produced by flux leakages, and are often
called leakage inductances. Inductance
L. in the networks of Figure 4 represents

that produced by the primary turns (Np)
wound on the ferromagnetic core of thg

transformer, and is not the mutual
inductance (M) shared by primary and
secondary windings. Recall that mutual
inductance is a mathematical measure of
the degree of coupling between two
windings of a magnetic. 1In this case, we
can easily find the value of M by writing
the two nodal equations that relate input
and output currents of the circuit
models, and then isolate the common
inductance terms within them. If this is
done,

then M is found to be:

(6)

LOAD

2 roap
>

LOAD

Figure 4 Electric-circuit equivalent networks
for the two-winding transformer of Figure 3(a).

3 ACHIEVING ZERO RIPPLE CURRENTS

Although the techniques of achieving zero
ripple currents in the windings of
selected magnetic designs have recently
been thoroughly explored [10], there is
much historical evidence that the use of
magnetic means to lower ripple currents
in converter outputs is not a new
discovery. For example, G.B. Crouse
disclosed in his 1933 United States
patent [6] a magnetic method for lowering
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the ripple voltage of an L-C filter for
use in radio receiver power supplies.
This method, upon close scrutiny, appears
to be identical to one reported some
years later by S. Feng [7] for reducing
the size of filter capacitors used across
the outputs of power converters.

In both cases, the method entailed the
addition of another winding to the filter
inductor, whose mutual inductance
relationship to the original inductor
winding was selected by design to "steer"
the ripple current in the main winding to
the added "secondary" winding and,
therefore, away from the output of the
filter. The resulting circuit
arrangement is shown schematically in
Figure 5, for application as the
secondary filter of a forward converter.
Note that a filter capacitor (C) is
necessary for DC isolation of the "inter"
winding and is selected to maintain an
average voltage across it equal to VO in
the presence of the ripple current.
Ideally, the mutual inductance shared by
the inductor windings is then chosen to
completely remove the ripple current from
the load (R) and to steer it to the inner
winding (N3), For this reason, no output
filter capacitor is shown across R in
Figure 5. However, in practical designs,
some capacitance is usually added across
R for decoupling of noise and for
additional energy storage for
instantaneous load demands.

D1

___—{>+__—T

— ‘

Figure 5 "Coupled-Inductor" output filter
network of a quasi-squarewave converter.

Np = Ng

To understand how the inductor
arrangement of Figure 5 can magnetically
reduce ripple currents, we can use the
electric circuit model developed in
Section 2.1. Looking at Figure 5, we can
assume that the voltages impressed across
the two windings of the inductor are
proportional in amplitude and equal in
dynamic periods, such as those shown in
Figure 6(a). For our purposes, we will
therefore assume that the “primary"
voltage is of a value equal to vg, with
the "secondary" excited by another
proportional voltage, avg, With these



assumptions, we can impose these voltages
across the terminals of the electric
circuit model form Figure 4(c), and then
analyze what model values must be present

to make the primary ripple current (ig)
vanish.
@ F-- ="~~~ - == A
| s o |
- Y o
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I
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R | | -
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of Fig. 4(c).
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Figure 6 The coupled-inductor of Figure 5
modeled using the transformer equivalent
circuit (a),driven by proportional voltages (b).
(Note: a =1 for Figure 5).

This analysis task is easily performed,
as illustrated in Figure 7. Writlng the
circult equations for Figure 7(b) gives:

2
NS d10
Ng Ns\  (di g (
) —_ G 8)
(NP)VS {Np) Lelgt
2
L. = Ns LlaNe -y (9)
Therefore, if we select the leakage
inductance of the secondary winding to
meet the needs of (9), then the primary
ripple current will be reduced to zero!
Although not shown here, a similar
analysis of the circuit model of Figure
6(b) for zero-ripple secondary current
can be made. The value of primary
leakage inductance for iO =0 is then
found to be:
(10)

Sy
b= bdang -

Comparing the constraints imposed on the
values of Ly and L by (9) and (10),
respectively, one finds that it is not
possible to achieve zero values of 15 and
ig simultaneously. This point is also
made by the current waveforms for ig and
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Figure 7 Circuit conditions in the model of

Figure 6 for 15 = 0.

1y illustrated in Figure 8. Note also
from the equations accompanying Figure 8
that the effective inductance seen at the
"primary" terminals of the two-winding
magnetic will be equal to its open-
circuit value (i.e. "secondary" side
open) when L; is selected to reduce ig to
zero. Conversely, the effective
inductance seen at the "secondary"
terminals will be equal to its open-
clrcult magnitude when L, is set to
reduce ig to zero.

Ss - _ = - - s
at T F L N at Ny NeLo
LZ*(N )Lc
| S _..1—( - T~
. > -
g g L- S~o”
dt di

Figure 8 Input and output current waveforms
of Figure 6(a) when selected values of L, or
L, are present (Note: a =1 for Fiqure "6(a))

In actual practice, it is difficult to
design and manufacture magnetic
assemblies with consistent and specific
values of parasitic leakage inductances
to achieve the zero-ripple current
conditions as defined by (9) or (10).

One viable solution to this producibility
problem is to tightly wind primary and
secondary turns to reduce Lj and Ljp to
essentially zero, and then to insert a

small extermal "trimming" inductor [8] in



series with the input or output to
emulate the reguired inductance needed
for Ly or Lp. This trimming method 1is
shown in Figure 9, along with
corresponding values of Lgyt Ne€cessary
for zero-ripple current conditions.

— Tramformer Model for h ~ 1

{a) [

Transtormer Model for h = 1

Figure -9 Using small external inductances to
trim ripple current magnitudes in the circuit
of Figure 6(a).

Because of recent emphasis on application
of zero-ripple-current filters in 'Cuk
converter variations [9], [10], it is now
generally believed that this particular
family of converter topologies is the
only one that can benefit by their use.
However, as we have just seen, this is
not the case. In boost converters, these
same principles of ripple current
reduction can be applied to their input
inductor arrangements, one example of
which is shown in Figure 10. And, as we
will soon see, this method of ripple
current reduction can also be
advantageously used in both buck and
boost derived integrated-magnetic
converter systems.

[

| i
ikt o g
S S

P —
’

t

L —= tightly—coupled windings

Ny
Laxt = Le N, T

L izing i of L ref

Figure 10 Using a coupled-inductor
arrangement in a basic boost converter
to reduce input ripple current magnitude.

to Ny.
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4 DEVELOPING AN INTEGRATED-MAGNETIC
FORWARD CONVERTER

It is interesting to note that, contrary
to popular belief [3], integrated-
magnetic concepts for power converters
are not innovations of research performed
over the past seven years. Like the
magnetic methods of ripple current
reduction described in the last section
of this paper, the concept of integration
of the magnetic functions of power
processing circuits has historical roots
in much earlier periods. Perhaps the
best documented evidence of this fact is
an obscure (and mis-titled) United States
patent by Cielo and Hoffman of the IBM
Corporation [11l]in 1971, which discloses
possible circuit methods for integration
of the transformer and i1nductor of so-
called "push-pull" DC-to-DC converters.
Later in this paper, we will examine the
methods of this interesting patent by
extending the integrated-magnetic forward
converter concepts to include "push-pull"
swltch arrangements.

With a brief exposure to magnetic circuit
modeling methods and a review of
inductive ripple current reduction
technigues behind us, let us proceed to
systematically construct a single
magnetic assembly wherein the transformer
and the inductor of a forward converter
can be contained. No rigorous synthesis
procedure will be followed here, but
rather a path of deduction and intuition
based on the general operation of this
converter and knowledge of the flux
change relationships that must exist in
its inductive components.

The first step in our integration process
will be to redraw the forward converter
circuit of Figure 1 in a manner so as to
emphasize both the electrical and
magnetic aspects of the converter. Then,
assuming that the converter is operating
in the continuous mode of inductor energy
storage, the equations describing circuit
conditions for each of the two switching
states are found, and then placed in a
format relating corresponding flux
changes in the transformer and inductor.
Because we are interested at this time in
only major flux relationships, the
describing circuit equations can be
ideal, thus ignoring all parasitics
including switch and diode drops,
switching losses, etc. The elimination
of parasitics is not a requirement, but
it is a convenience for this discussion.

The redrawn forward converter is
illustrated in Figure 11l. The core of
the transformer is shown ungapped, while
the inductor core is shown with an air
gap, as is the usual case for a magnetic
that must withstand DC bias. Transformer



windings are drawn and dotted to
emphasize an assumed counter-clockwise
direction of flux in its core and to
produce a positive voltage (v1) across
the secondary winding (Ng) when the
primary switch (Ql) 1is ON. Note also
that we have included a "core-reset"
winding (N,5) on the transformer for
energy remgval during intervals when Ql
is OFF. A core material with low
residual flux is presumed. For the
inductor with its winding position as

shown, flux direction will be clockwise.
L
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-0 a1
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Figure 11 Conventional forward DC-DC power

converter (idealized) drawn to emphasize
magnetic operations.

Next, the ideal voltages that appear
across the transformer and inductor
windings are found by simple circuit
analysis for each of the two switching
states of the converter, DTg and (1-D)Tg
= D'Ts. Using (1), we then relate the
rate of flux change in the transformer
core (gp) and in the inductor (g,) to
these voltage magnitudes.

DURING DT:

}_ﬂI=VL=V_1 (11)
TTdt TN WS
o dfi V1 Vo
fogent
DURING D'T:
g - 's (13)
gT_NFz
§{=l’_0 (14)
L N

Looking at the equations for interval
DTgr We see that we can combine them to
remove the intermediate secondary voltage
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value, Vi:

(15)

# =(:_;) 1“L ¥ \NI§O

Note that the last term of (15) is of a
form that could be considered as defining
a flux change in a magnetic medium that
is dependent on the value of the output
voltage, Vg3, of the converter and the
number of secondary turns on the
transformer, Ng, It follows then, that
if we make this consideration, that such
a magnetic medium must be a part of the
transformer assembly to satisfy the

conditions of (15). Therefore, we can
rewrite (15) as:
NV g g (16)
i {ie) b
where §j = Vo/Ng- Turning now to the

first right-hand term of (15) and (16),
we note that its contribution to @p is
dependent on a fraction, N /Ng, of the
flux change rate in the in&uctor of the
converter. Since our ultimate goal is
to make the inductor an integral part of
the same magnetic assembly that also
contains the transformer windings, it is
logical to assume that Np, should be made
equal to Ng, SO as to contain all
inductor fiux in a single magnetic path.
As we will see later when we analyze the
integrated magnetic that results from
this "synthesis" exercise, Ng must be
equal to Ny to realize a non-pulsating
output current waveform and to achieve an
input-to-output voltage transfer function
that matches that of a forward
converter.

Setting Np = Ng in (16), we arrive at a
final expression for @p during interval
DT.:

s?

hr=# 4,

(17)

Remembering our previous magnetic
modeling, we can interpret (17) as
defining a magnetic assembly in which
there are three major flux paths. This
equation also tells us that the flux
change in an input source related path
(#p) contributes to the change in another
path (#p) associated with the "inductor"
portion of the assembly, as well as to
flux change (fj) in a third path. From
the assumption made in (16), this third
path is related to the output voltage
value of the converter.



These general observations permit us now
to sketch a possible magnetic path
arrangement that satisfies the conditions
of (17) for the switching interval DTg-
This sketch is shown in Figure 12(a).
Note that the "inductor" path includes an
airgap, as we expect that this leg of the
magnetic core will need one to establish
the required amount of storage inductance
and to sustain DC bias without material
saturation. To the outer legs of the
core arrangement, we have added windings
for primary and secondary in accord with
(11) and (12), dotted properly to produce
the required polarity of vg for the
indicated directions of ig and ige

Using the magnetic arrangement of Figure
12(a) as a baseline, we now look at what
must be added to permit the conditions of
(13) and (14) to be satisfied for the
other switching interval D'Tg- First, a
winding to release the energy stored in
the center leg is needed, and its turns
(Np,) must equal those of Ng from our
earlier discussions. Second, a winding
(Npy) is needed in the same leg of the
core as that of the primary for "reset"
purposes. The magnetic arrangement that
results is shown in Figure 12(b). Note
that these two windings are dotted so as
to produce the same flux directions in
their respective core legs as those in
Figure 12(a).

INTERVAL INTERVAL
ot oT

(b)

T T
ro = F-<- - 7 - -
1
| ! |
) l al
' —o—d4 1 b do.
' <'T—>"P2 J . f‘\ o
P o ¢ S N S o 1
Vs T e .o " P
g4 i\ 1 A L |
I [ S 1 !
[ [ S J

Figure 12 Developing magnetic core
arrangements for each state of the converter
in Figure 11.

Our final task in this deductive
"synthesis" process is to combine the
magnetic arrangements of figure 12 by
addition of switches and diodes to
establish the required winding voltage
values for each switching interval of the
converter. From our knowledge of tne
forward converter, we would expect that
no more than one switch and two diodes
would be needed, and this is indeed the
case.

two
the

Figure 13 is the schematic of the
integrated-magnetic version of the
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forward converter that results from our
efforts. Reflecting now on the steps
that were necessary to place thne
transformer and inductor on a single-core
structure, we find that no exotic efforts
were really required and that, in
reality, the deductive procedure followed
was rather straight-forward and elegantly
simplistic. It now becomes clear that we
can use similar deductive methods to
evolve 1ntegrated-magnetic versions of
any transformer-isolated buck-derived
converter. Once this 1is done, we can
then use the principles of duality
between converter circuits [12], [13] to
formulate complimentary boost topologies.
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Figure 13 A forward converter with
integrated magnetics.

4.1 Verification By Analysis

Following the evolution of an integrated
magnetic arrangement for a converter, it
1s worthwhile, 1f not mandatory, that its
structure by verified by analysis. This
1s necessary in order that no major
design aspect has been overlooked, as
well as to examine the effects of any
circuit parasitics (such as leakage
inductances, etc.) that may have been
introduced by the integration process.

For the integrated-magnetic forward
design of Figure 13, the analysis
procedure begins with the extraction of
the magnetic from the overall circuit
topology, labeling each winding as to
voltage polarities as well as current
directions that are imposed by the
converter. It is also advantageous to
mark each winding terminal and carry the
identifying marks through the modeling
procedure, so that the final electric
circuit model found by the analysis can
be directly substituted for the magnetic
assembly in the converter topology.

An isometric sketch of the extracted
magnetic from Figure 13 is shown in

Figure l4(a). To this sketch, we add
flux directions in each leg, assuming



that the primary winding, Npj, 1s the
exciting and dominant winding of the
magnetic. From this point on, the
analysis procedure follows the same steps
of the two-winding transformer example of
Section 2.1, keeping in mind that there
are three magnetic paths and four sources
of mmf in this case. Also, since we are
only interested in major flux paths, we
have omitted all leakages for this
examination. However, they can be easily
added later and the corresponding
electric circuit model changed to reflect
their presence.
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Figure 14 Pn electric model (b) for the
magnetic system of (a) taken from Figure 13.

The electric circuit model of the
magnetic of Figure 1l4(a) is shown in
Figure 14(b). For the sake of brevity,
we have not included the intermediate
steps of the modeling effort here, but
they can be found in [14]. This
particular model is referenced to the
main primary of the magnetic, Npj, as
evidenced by the turns ratios og the
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three ideal transformers within it.
Inductance Lg represents that presented
by the center-leg windinyg, while the two
inductances, L., represent those
presented by the outer-leg windings of
the core (Referenced to Npj)-

The next step 1s to place the elctric
circuit model into the converter circuilt,
as shown in Figure 15. 1In making this
placement, we have also "moved" Lg and
one of the two L. inductances "through"
the ideal transformer of turns ratio Npj*
Ng, using standard impedance translation
methods. This is done to position most
of the inductances to the "right" of this
transformer in order that the final
equivalent converter circult can be
compared to that of a forward converter
with discrete magnetics. Note that this
impedance movement also required a change
in the turns ratio of the ideal
transformer across Lg.

5 ®N_ 6

Figure 15 Placing the model of Figure 14(b)
into the topology of Figure 13.

In practical designs, we would expect
that Lo would be much larger in
inductance value than Lg, since the
permeability of free air is much less
than that of a ferromagnetic material.
Therefore, we can simplify our analysis
at tnis point by eliminating the
reflected L. across terminals 7 and 8 of
the circuit model in Figure 15. Also, we
can assume that the L, across terminals 1
and 2 of the model can be viewed as the
"magnetizing inductance" of a real
transformer of ratio Np;: Ng. It is also
apparent that winding Npp can be a part
of this same transformer, since it
parallels L¢-

With these assumptions in mind, we can
now redraw the circuit of Figure 15 in a
slightly simpler form shown in Figure
l16(a). We also remember that the



integrated converter of Figure 13 also
constrained Np to be equal to Ng and,
therefore, the turns ratio of the ideal
transformer across L has been changed
accordingly in Figure 1l6(a). With the
turns ratio of this transformer now 1l:1,
it can be completely removed by simply
re-orientating the circuit positions of
diodes D1 and D2.

This final analysis step leads to the
converter configuration of Figure 16(b),
which matches that of a conventional
forward converter! We see also that the
equivalent output inductance of this
converter is equal to that set by the gap
of the integrated-magnetic multiplied by
the squared ratio of "transformer"
secondary-to-primary turns. If we had
not chosen Ny, to be equal to Ng, this
equivalent cilrcuit and its predecessor in
Figure 16(a) tells us that the equivalent
inductance would not be of the same value
for each switching state of the converter
and, theretore, we could expect the
output current to be somewhat pulsating,
just as would be experienced in a forward
converter with a "tapped" output inductor
[14]!
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Figure 16 Further circuit manipulation (a)
to derive the discrete magnetic version of
Figure 13 shown in (b).

It is evident from the results obtained
above, that the analysis of an integrated
magnetic by the use of electric model
equivalents has great value and provides
much valuable design information. It is
particularly valuable in designing
integrated-magnetic versions of existing
converter designs, where filter
inductances and transformer
characteristics (turns ratios, etc.) are
known quantities. Using the equivalent
circuit, such as the one in Figure 16(b),
these quantities can then be directly
related to the parameters of the
integrated magnetic, such as core
dimensions and permeabilities, winding
turns, etc.

4.3 Voltage and Current Waveforms

From a "black box" standpoint, we would
expect an integrated-magnetic version of
a converter to have the same voltage and
current characteristics as its discrete-
magnetic counterpart. For the forward
converter design of Figure 13, this 1is
indeed the case, as is evidenced by the
dynamic current and voltage waveforms of

Figures 17 and 18, respectively. These
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Figure 17 Idealized currents in the SPC
topology of Figure 13 (continuous mode).



waveforms and their magnitudes were
derived by inspection of the current and
voltage conditions that must exist in the
electrical circuit models of Figures 15
and 16 for each converter state
(continuous mode of energy storage
assumed). As we see from both sets of
waveforms, current and voltage stresses
on the switches and diodes remain the
same as those that would be experienced
in a conventional forward design.
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Figure 18 Voltage waveforms in the SPC of
Figure 13 (continuous mode).

5 DEVELOPING INTEGRATED-MAGNETIC BOOST
CONVERTERS

It is possible to follow similar
procedures of deductive synthesis and
analysis from the last section of this
paper to evolve integrated-magnetic
versions of various boost-derived
converters, such as the reverse converter
[13]) in Figure 1. However, given a dual
buck-derived converter approach, it is
much easier to use duality methods [12],
[13] to derive these complimentary
circuits.

For example, given the integrated-
magnetic forward converter, duality
manipulations then produce the
integrated-magnetic boost equivalent of
the reverse converter of Figure 1. The
unusual converter that results is shown
in Figure 19. In this case, when Q2 is
ON, energy is stored in the center-leg of
the magnetic. During this same time
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period (DTq), load needs are supported by
the output capacitor, C, and by
magnetizing energy stored in the outer
leg of the magnetic from the previous
switching cycle (via D3). When Q2 turns
OFF, Q1 is turned ON and the energy
stored in the center leg is magnetically
routed to the output load, R, via winding
Ng, with diode D1 now forward-biased and
the other diodes non-conducting. Like
its discrete-magnetic contemprary in

Figure 1, the ideal input-to-output
voltage transfer function is simply:
Yo Ns . 1 (18)
V¢ Np 1-0D

with the "inductor" turns egual to that
of the "primary" winding of the magnetic
assembly.
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Figure 19 An integrated-magnetic version of
the reverse converter shown in Figure 1.

6 ADDING ZERO-RIPPLE CURRENT FEATURES

Magnetic integration of the inductors and
the tranformers of buck and boost-derived
converters does not lessen the
possibility of adding additional windings
to control ripple current magnitudes on
output or input lines.

As we have seen in prior examples of
integrated-magnetic forward and reverse
converters, the inductive part of their
magnetic assemblies is isolated to one
path of the core arrangement. Therefore,
by adding another winding in these same
paths and impressing a voltage across it
that is proportional in amplitude and of
the same frequency as that appearing

across the original inductor winding, we
can steer the ripple current from the
inductor winding to the other winding
and, therefore, away from the output. We

also have the option of "trimming" the
ripple current magnitude by external
means [8] if we so desire.



Figure 20 shows an integrated-magnetic
forward converter with output ripple
current control capability. Note that
another winding has been added to the
center-leg section (Npg)s along with a
small series inductor (Ly) and DC-
isolation capacitor (Cg). Winding Np 1is
the original inductor winding and the new
winding, Npgs is wound in close proximity
with it. Tﬁis is done to minimize
leakage inductance effects and to
maximize the mutual inductance that will
exist between the two windings.

With the new winding positioned in the
converter circuit as shown in Figure 20,
the value of inductance L, needed to
cause the output ripple current to vanish
is found easily using (9) with a = 1:

Ny p\2 N
MR N
Lx (W) to\wiy

where Lg is the inductance presented by

the airgap of the center leg with Ny,
turns.

1 (19)

|
1

.
I
. o t
| |
—DH—1b d
- 1 oT,
sz‘_'_.> NG P )\ ° ~onte-
q- b | i
. q— < |
|
° |
. o—-——l— 'b A | 01 iy
q97F dqd 2 q! = Dt *
Ney — + N N,
P': b d Pve O :N, 02 3 T R =R
| d i
! L Te] T )
! T |
Vs ! (N l N
e A W )
L] N
T Ly ”h:{ Ly (Nm -1
a1 o, Lx
Lg = gap inductance related
+ o N
O Cr
Ny = Ny o - refative to Njy

Figure 20 Adding ripple control features to
the integrated-magnetic forward converter of
Figure 13. (NL’ NLR tightly coupled).

In a similar manner, a ripple-control
winding can be added to the integrated
magnetic of a reverse converter, as is
done in Figure 21. In this case, the
value of Ly to reduce the input ripple
current to zero is again the same as
given by the solution of (19), assuming
that windings N; and Npg are tightly
coupled together.

In actual designs, there will be some
slight slope in the "zero" ripple
currents of these two converters due to
the presence of the inductances (Lg) ©of
the outer-leg primary and secondary
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windings. However, since Lo 1s usually
much greater in value than that posed by
the "inductor" winding, Lg, this
deviation from an ideally flat current
waveform is normally so small that it can
be neglected for all practical purposes.
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Figure 21 Adding ripple control features to
the integrated-magnetic reverse converter of
Figure 19. (NL, N g tightly coupled).

7 PUSH-PULL DESIGNS WITH INTEGRATED
MAGNETICS

Just as there are so-called "push-pull"
versions of the forward converter with
discrete magnetics, integrated-magnetic
arrangements are also possible. Two
viable approaches [1ll] are shown in
Figure 22. The first alternative, shown
in part (a) of this illustration, looks
very similar to the single-switch forward
design of Figure 13, except that another
set of primary and secondary windings
have been added on opposing sides of the
outer portion of the core structure.

With the windings dotted as shown
(relative to the primary winding, Nprs
controlled by Ql), diode D1 will conduct
when Q1 is ON, and diode D2 will conduct
when Q2 is ON. During both conduction
intervals, energy is stored in the center
leg of the magnetic, and is then released
to the load via diode D3 when Q1 and Q2
are both OFF.

In the case of the second alternative
shown in Figure 22(b), note that the
phasing relationships (i.e. dots) of the
two secondary windings (Ng) have been
changed from those of Figure 22(a). This
change now prevents significant energy
from being stored in the center leg of
the magnetic, since conducting
secondaries lie on the same magnetic path
as their corresponding primary windings.
For example, in Figure 22(b), when Ql is



ON, D1 will conduct and when Q2 is

ON, D2 conducts. Therefore, another
winding (Npj) has been added to the
center leg to provide a means of energy
storage in the center leg when either Q1

or Q2 1is conducting.
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Figure 22 Two "push-pull" versions of the
forward converter of Figure 13,

7.1 1Ideal Voltage Transfer Functions

The input-to-output voltage relationships
for the continuous mode of inductive
energy storage for the converters of
Figure 22 can be easily found by equating
the volt-seconds appearing in the center
leg of their integrated-magnetic
assemblies during each of the two
switching intervals, DTg and D'Tg. In
the case of Figure 22(a), the DC voltage
transfer is ideally found to be:

vo ML D } (20)
VS NS j - DU- = (NL/NS)]
For Ng equal to Np, (20) reduces to:
Yo Ns .y (21)
s Np

which confirms that this integrated-
magnetic converter design is buck-
derived. For the other circuit
arrangement in Figure 22(b), the DC
voltage transfer function is ideally:

]

1
S W[1+ (D'/D)(NLl/NLz)(Ns/NP)] (22)
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In this instance, if:
Ne N2 )
then (22) becomes:
Vo _Ns (24)
Vg Np
which, like (21), confirms that this

circuit variation is a member of the buck
derived converter family. Interestingly
enough, this converter, with its magnetic
replaced by its electric-circuit
equivalent [14], is found to be an
integrated-magnetic version of the
Weinberg circuit ([15}!

7.2 Voltage and Current Waveforms

The typical current and voltage waveforms
that will be observed in either converter
circuit of Figure 22 are shown in Figures
23 and 24, respectively. In the case of
the current waveforms, they look very
similar to those of a conventional "push-
pull"™ quasi-squarewave converter, except
that the magnetizing current of the outer
legs of the magnetic produces a minor
step in the otherwise continuous form of
the output current. As discussed
earlier, these "steps" will usually be
very small because of the high values of
effective inductances of the windings on
the outer 1legs.

Voltage waveforms also are quite similar
to those of a "push-pull" buck-derived
converter, except that the magnetic
integration process has yielded another
potential benefit - lower OFF voltage
stress on the two switches of the
converter. Ideally, the OFF voltage
stress on either switch in a conventional
"push-pull" converter will be equal to a
maximum value of twice the input voltage
magnitude. However, in its integrated-
magnetic version (Figure 22(a), maximum
OFF voltage stress is equal to the value
of source voltage plus the reflected
output voltage. This implies that, by
proper choice of turns ratio, we can
significantly reduce switch voltage
stress by using integrated magnetics as
compared to a conventional discrete-
magnetic equivalent!

7.3 Practical Design considerations

In order to reduce the possible harmful
effects of leakage inductances, the
integrated-magnetic circuit variation of
Figure 22(b) is often preferred over that



of its contemporary approach in Figure
22(a). Note that, in Figure 22(a),
corresponding primaries and secondaries
are positioned on the core legs so that
they cannot be tightly coupled together
(i.e. wound tightly together). However,
in the converter of Figure 22(b), because
corresponding primaries and secondaries
lie on the same legs of the core
structure, they can be wound tightly
together to maximize their magnetic
coupling and to minimize parasitic
leakage inductances. Therefore, for this
reason, the design of Figure 22(b) is
usually chosen rather than the circuit of
Figure 22(a), even though the latter
approach requires an additional winding
to be added to the center leg for energy
storage.
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Figure 23 Ideal current waveforms in the

converters of Figure 22 (continuous mode).

Another advantage of the converter in
Figure 22(b) is the presence of an
inductor in series with both primary
switches. Thus, high instantaneous
current due to conduction time overlap is
automatically eliminated. Also, this
converter, like 1ts discrete-magnetic
counterpart, can be made to operate as a
boost converter, if the primary switches
are purposely forced to have overlaping
conduction intervals [13].
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Figure 24 Voltage waveforms in the converters
of Figure 22 (continuous mode).

8 SMALL-SIGNAL MODELING CONSIDERATIONS

Even though the magnetics of a buck or
boost-derived converter have been
magnetically integrated, modeling and
analysis for stability and other dynamic
studies is straight-forward, using proven
techniques, such as the state-space
averaging method [2]. All that is
necessary is to derive an electric
circuit model for the integrated-magnetic
system, and then to add it in place of
the magnetic in the converter topology.
Following this, the normal procedures for
deriving small-signal averaged models are
followed, accounting for additonal
inductive elements [16] as presented by
the integrated-magnetic arrangement.

For example, the averaged small-signal
model for the integrated-magnetic version
of the forward converter of Figure 13,
using its equivalent electric-circuit
topologie from Figure 16, is illustrated
in Figure 25. Note that the averaged
model accounts for all of the inductive
elements of the electric-circuit model,
as well as its isolation transformer. If
we had chosen to add leakage inductances
to the electric-circuit representations



in Figure 16, they could also have been
easily accounted for in the equivalent
small-signal model.

Efyd Lol

Figure 25 Averaged small-signal model of the
integrated-magnetic forward converter of
Figure 13.

9 LABORATORY INVESTIGATIONS

All of the integyrated-magnetic versions
of the various converters shown in this
paper have been built and tested by the
authors over the past two years. Major
areas of interest for these empirical
examinations were verification of
expected DC voltage transfer functions
and anticipated dynamic waveforms within
the converters. 1In all cases, the
results obtained were very close to those
predicted.

Typical of the test results are thne
voltage waveforms taken for a low-power
version of the integrated-magnetic
Weinbery converter of Figure 22(b), shown
1n Figures 26(a) through (c). In this
instance, the supply voltage was set at
40VDC, and PWM duty cycles of Q1 and Q2
manually adjusted to obtain an output
voltage of 5VDC, across a load of 5 ohms
and an output capacitor, C, of 100
microfarads. PWM clock freguency was set
very close to 100KHz, resulting in a
50KHz switching frequency of each primary
power switch. Also, to minimize voltage
"spikes" produced by leakage inductances,
small R-C snubbers (1.2K ohm + 0.01 uf)
were added across each primary winding
and across Ng p-

The integrated magnetic used for this
particular experiment was composed of two
joined Ferroxcube E625 E-cores, with each
of their center legs ground to produce a
total airgap length of 0.01". Three
bobbins were then placed on each leg of
the core structure, each with two sets of
windings. Each winding set was composed
of 30 turns of #20 AWG wire and 15 turns
of #20 AWG wire. The completed magnetic
was then connected into the converter
arrangement of Figure 22(b), with

Figure 26 Breadboard test photos of voltages
within the integrated-magnetic Weinberg
converter of Figure 22(b).
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windings phased as shown. Windings with
30 turns were used as primaries and for
Ni 1, while the 15-turn windings were used
for the secondaries and for Np ;-

Using the relationships developed in
Section 2, the inductance of the 157
center-leg winding was calculated to be
about 1 mh for an airgap length of 0.01".
Inductances of the primary windings on
the outer legs were also calculated to be
about 10 times that of this center-leg
winding, confirming the earlier
assumption that these latter inductances
are indeed much larger in value.

Comparing the lab photos of Figure 26 to
the ideal waveforms of Figure 24 expected
in this design, we find that they closely
match in all instances. Also, the
observed duty cycle of each primary
switch is in close agreement with that
predicted earlier by (24) when correction
is made for converter efficiency.

10 CONCLUDING REMARKS

In this paper, we have presented a
broader and more general insight into
integrated-magnetic concepts for
switchmode DC-to-DC power converter
circuits and, hopefully in doing so, have
dispelled a common belief among designers
that the transformers and inductors of
buck and boost-derived converters can not
be magnetically blended on a single core
arrangement.

Also contrary to popular thought, the
demonstrated ability to integrate the
magnetics of these converters also
removes the restriction that impressed
winding voltages be completely .
proportional in all respects. In
general, this particular restriction is
correct, if one thinks only in terms of
winding arrangements placed on a single
magnetic path. However, as we have seen,
multiple-path arrangements are perfectly
viable design approaches. It must be
remembered that, even though the winding
voltages of the transformers and
inductors in converters may not be
completely proportional in frequency and
amplitude, they share a common
operational property - flux change.
Therefore, if -relationships can be
established between their flux changes
from a knowledge of their position in a
converter circuit, then it possible to
use them to deductively synthesize a
single magnetic system to house all
transformer and inductive functions.

With integrated-magnetic versions of
first-order buck and boost converters
established, the possibility of magnetic
integration of all of their family member
topologies becomes immediately evident.
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Many of these possibilities are shown in
[14],. while others are still to be
disclosed in the future. Although we
have presented integrated-magnetic
versions of single-output buck and boost
converter arrangements, the idea is
easily extended to accomodate multiple
outputs, or multiple inputs as the case
may be. This is easily done by the
addition of more secondary or primary
windings on appropriate core legs,
together with contemporary switches and
diodes.

In this paper, we have also shown methods
whereby more windings can be added to
inductive core paths to control input or
output ripple current magnitudes, and
significantly reduce them by proper
internal and/or external magnetic means.
Even though we have used single inductive
paths in making this demonstration, it 1is
also feasible to add more core legs with
appropriate airgaps to the integrated-
magnetic systems to control ripple
current’ characteristics of contemporary
windings, much in the same manner as was
shown in {10]) for the two inductors of a
'Cuk converter.

The discussion here has been restricted
to switchmode power converters. Work
presently in progress indicates that
these techniques can also be applied to
resonant converter circuits. Take for
example the series resonant converter,
with an inductor in series with the
transformer primary. This inductor can
be absorbed into the transformer simply
by increasing the primary-secondary
leakage inductance. This produces an
integrated magnetic.

Finally, we conclude our paper with the
following reflective thoughts. Although
recent years have seen an increased
interest in integration concepts for
minimizing the magnetic content of
converters or for enhancing their
conversion properties, such techniques
have historical roots, reaching back into
the early years of this centruy. It is
interesting to note that many advances in
magnetic concepts for electronics were
made in these earlier periods, with years
following the introduction of the first
electronic digital computer seeing little
or no new work being continued in this
important aspect of power electronics
design. Shortly thereafter, a sad
decline in educational opportunities for
engineers in the field of practical
magnetics design began, and continues
today. Ironically, it appears now that
magnetics could hold the key to achieving
smaller and more efficient power
conversion systems. As was noted in the
introduction of this paper, it is truly a
time of frustration and reflection for
the power electronics engineer.
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