Rr study appendix D

Rr reference point

Miscellaneous Bits

Terman mentions the reference point because the feedpoint is often not coincident with the
current maximum ("loop") as indicated in figure 1 (from Johnk™).
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Figure D1 - typical current distributions.

Some authors (Stutzman & Thiele®® for example) will identify both possibilities with the
notation Rrm or Rri referencing either the maximum current point or the feedpoint
respectively.

Some experimental and modeling data

Assuming losses other than Rg are small, the measured Ri for a vertical has traditionally been
assumed to consist of two parts, Rr and Rg. Typically for ground mounted verticals Rr is
assumed to be the value of Rr for the antenna over an infinite perfect ground-plane and Rg =

Ri - Rr. An example of this thinking can be seen in the classic paper by Brown, Lewis and
Epstein’™ (BLE).
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Figure D3 - Ri and field strength (F) from BLE™, figures 38 (right) and 39 (left).

Figure D3 shows two graphs taken from their paper. The test antenna had a theoretical Rr =
24.5 Q. The graphs show the measured Ri and field strength (F) for two numbers of radials (15
and 113) as the radial length was varied. In the case of 15 radials, as the radial length is
increased, Ri converges on =31 (), indicating Rg =6.5Q. In the case of 113 radials, Ri converges
on the theoretical value Rr=24.5Q indicating that when a large number of long radials are used
Rg becomes very small. Ok, this is what we're accustomed to seeing and it fits our conceptual
model in figure 2 where Rr is assumed to be the value over perfect ground. However, in
addition to Ri there is plot of F on each graph. In both cases while Ri has flattened out at
longer radial lengths, F continues to rise. Using our conceptual model this implies that the
efficiency continues to improve even though Ri has stabilized? It would appear that Rg
continues to decrease and Rr increases keeping the sum the same. Does variation in both Rr
and Rg actually explain the apparent contradiction between the two curves? The BLE paper
isn't the only place we see this a possible contradiction, I've seen it in other papers and in my
own measurements. Some times Ri not only flattens out but starts to increase as longer or

more numerous radials are employed (see Wait").

Some years ago while modeling 80m verticals | wrote down the following comments (the
figure numbers have been modified to fit this article):



"Figure D4 gives an example using NEC4 modeling where we vary the buried radial length at a
given frequency.
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Figure D4, Input resistance from NEC4 modeling

At first glance this graph is crazy! For example, if we assume that Rr = 36.6 Ohm, we see that
for the larger values of N, the input resistance (Ri) is substantially less than this for some radial
lengths, implying negative Rg. Notice also that for N=4, lengthening the radials increases Rg
right off the bat! For larger numbers of radials, initially lengthening the radials does reduce
the input resistance but when the radials are long enough, up goes the resistance again. If we
interpret the input resistance to consist of Rr over ideal ground plus Rg due to ground losses
then these curves don't make sense.

The idea that we can simply subtract the ideal Rr from R; to determine Rg may not be correct.
The radial system has an effect on Rr even when the radials are buried. As we change the
number and length of radials, Rr oscillates around some value and the range of variation can
make Rg appear to be lower or higher than it really is. Figure D5 is an example of this
oscillation for a 0.25 wl vertical over a perfectly conducting disk of radius "a", in free space, as
we vary the radius where k = 2rt/A. ka is 2t times the disk radius in wavelengths. For example,
ka=5 is about 0.8A. This graph is taken from Leitner and Spence Bl The graph shows both
experimental and calculated values.
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Figure D5- Variation in Rr with disc radius.

Rr oscillates around 36.6 £2 by about £5 2. This is a highly idealized case but when we repeat
it using radial wires rather than a conducting disk, the oscillations in Rr get even larger,
especially for small N. When we immerse the radial system in ground, the oscillations are
damped but still present. For poor ground the damping is not all that great as we saw in figure

4. For high conductivity ground the oscillations almost d/sappear as shown in figure D6."
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It turns out that I'm not the first to note this. Wait™ shows this and in a 1936 IRE paper,
Hansen and Beckerley ] calculated Rr directly from the radiated power over real ground.
What they show is the effect of ground on Rr for a range of ground constants. For perfect
ground they get 36.6Q but for real grounds, values for Rr are in the range of 16-25Q for
H=0.25A. This paper was written by two physicists at Stanford. Although an IRE paper it's

highly mathematical and uses Heavyside-Lorentz units rather than MKS. | suspect it reached a
very small audience.



For verticals where the height is greater than =A,/8 these details are pretty much a matter of
academic interest. However, for very short antennas, like those we'll be using on 630m where
we're interested in the radiated power for a given input power, the interplay between Rr and
Rg is of practical concern. One example would be recent measurements on my 630m
transmitting antenna. The antenna is a 95' vertical with a 240" diameter top-loading hat.
Initially I installed sixty four 150' radials around the base and made a measurement of Zi=R;+X;
using an vector network analyzer (VNA). | then added another sixty four 150' radials to bring
the total up to 128. With twice as many radials Ri increased! By doubling the number of
radials | expected | would reduce Rg somewhat and that would be reflected in a lower value
for Ri but instead it went up. | wouldn't expect ground losses to increase with more radials so
it appears that there was a small increase in Rr which does not agree with conventional
thinking!

These examples provided motivation for trying to understand what's going on.
Calculating Rr in short verticals

There are a number of different ways to calculate the perfect ground value for Rr in short

tl. Some other

loaded verticals. | usually use the method outlined by Edmund Lapor
approaches use the concept of equivalent height which gives the same results. Some years
back | wrote up some comments on Laport's approach. I've folded those notes into this

appendix.

In 1954 | purchased “Radio Antenna Engineering”, by Edmund Laport"’. I still have this book
although my copy shows it’s age having been carried over much of the world and soaked in
seawater on occasion. I've always found the book to be very helpful and it’s been one of my
standard references for antennas. Recently | mentioned this book to Paul Kiciak, N2PK, during
a discussion of short loaded vertical antennas. Paul wondered if Laport was really correct with
regard to the current distributions shown for short verticals. His questions made me realize
that | had accepted the information in the book rather uncritically for the past 60 years. While
| understood what his sources were | had not checked the material (in particular the discussion
in chapter 1 on low frequency antennas) using NEC to see if it agreed with Laport.

That was easy to remedy! The following is a very short study comparing NEC results to some
of the graphs in chapter 1 of Laport. | focused on figures 1.1 and 1.2 which I've used
frequently for preliminary designs of short loaded verticals.



Caveats!

The graphs in Laport are based on mathematical approximations using the assumption of
sinusoidal (or a portion of a sinusoid) current distribution on the antenna. While not strictly
true on real antennas the sinusoidal approximation has been shown to be very good in most
situations, especially for antennas where the height (H) is less than A/2. When modeling with
NEC the wires are divided into segments and the currents are given at the center of each
segment and assumed constant along a given segment. In this discussion the modeling
frequency is 1.83 MHz and | used segment lengths of 1.

It’s well known that due to the diameter of the conductor a wire will be electrically a few
percent longer than it is physically. Laport does not take that into account. His heights (H) are
the effective electrical height in degrees. NEC on the other hand does take this into account.
Laport assumes the top loading is in the form of a disc but for modeling I’'ve used a number of
radial wires for the top hat. These effects introduce small differences.

Laport Figure 1.1
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Figure D7 - Figure 1.1 from Laport showing the current distributions on verticals of different
heights.

Figure D7 can be used in two ways: to show the current distribution on a unloaded short
vertical (<90°), i.e. the current distribution above lines A-D for different heights or to show the
current distribution on a short loaded antenna, i.e. the distributions below lines A-D. The



distributions below a given line assume that enough top-loading has been used to resonate
the antenna at the operating frequency. | modeled both these cases with EZNEC pro v5 using
the NEC4AD engine. For simplicity | used perfect ground and lossless conductors. All the
conductors were #12 wire.

Figure D7 shows the current on the vertical is zero at the top and increases as you proceed
downward towards the base. If the antenna is very short the current distribution is essentially
linear. Figure D8 compares the modeled current distribution with H = 60° to a sine function.
As can be seen, the agreement between NEC and Laport is very good.
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Figure D8 - Comparison of NEC modeling versus Laport for an H=60° unloaded vertical.



Another possibility would be to chop off the top of the antenna and replace it with a capacitive
disc or several horizontal radial wires long enough to resonate the antenna. The NEC model |
used is shown in figure D9.
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Figure D9 — NEC model for a short (H=30°) top-loaded vertical

Figure D10 compares the current distribution on this model to a cos(h) distribution for H = 30°
with two types of top loading to resonate: four radial wires only and a combination of radial
wires and an inductor placed right under the top hat. Over most of the vertical we see good
agreement between Laport and NEC. However, at the top of the antenna there is a small
difference. As we’ll see in the next section, this small difference in current distribution doesn’t
seem to have much effect on the NEC radiation resistance (R,) values compared to Laport’s
calculation. In any case Laport’s profile is a good approximation.
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Figure D10 — Comparison between NEC and Laport for H=30° with two forms of top loading:
42’ radials wires alone and 20’ radial wires with an inductor at the top of the vertical wire.

Laport’s figure 1.1 gives a reasonable idea of what to expect for current distribution on at least
some types of short verticals.

Laport figure 1.2

In chapter 1 Laport gives a simple approximation for calculating the radiation resistance (Rr) of
short verticals. He states that this expression is valid for H < 30° but it seems to work well up
to H =50° at least.



The expression he uses is:

R.=001215 A’
Where

NI
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H is in degrees. | inserted this expression into EXCEL and generated the graph shown in figure
D11 which reproduces Laport’s figure 1.2.
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Figure D11 — Radiation resistance, at the base, for short loaded verticals.

To check Laport | modeled several top-loaded verticals with different heights and lip/lpase
ratios and compared the R, values between NEC and Laport. Here’s what | got:
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Table 1
NEC Laport NEC Laport

It/lb=0  1t/Ib=0 It/1b=0.8 It/1b=0.8

height [degrees] Rr Rr Rr Rr
10 0.31 0.30 0.94 0.98
20 1.19 1.22 3.57 3.94
30 2.67 2.73 8.05 8.86
40 4.83 4.86 14.45 15.75
50 7.79 7.59 23.08 24.60

As can be seen, the agreement is pretty good. More than adequate for an initial design.

Laport’s expression relates R, to the Ampere-degree area of the current distribution (i.e. the
integral of the current over H in degrees). In the ARRL Antenna Compendium, Volume 1, 1985,
pp. 108-115, Bruce Brown, W6TWW (sk), wrote an article entitled “Optimum Design of Short
Coil-Loaded High-Frequency Mobile Antennas. What Bruce did was to extend Laport’s concept
of “Ampere-degree area” to verticals without top loading but with the coil inserted part way
up the vertical. There has been some discussion on his treatment of the current distribution
across the loading coil. The current profile across the coil is not constant as he assumes but
decreases somewhat from bottom to top. The magnitude of difference in current amplitude
between the ends of the loading coil is however, a matter of some dispute but | still feel
Bruce’s work has considerable merit.

Conclusion

| think Laport’s work agrees well with NEC and has the advantage that for a given antenna
height you can get a good idea of the current distribution and the radiation resistance by
inspection with only a few minutes of effort. That’s a great starting point for the design of a
short antenna where the next step is to NEC modeling.
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ERP, EIRP and radiated power

On 630m the maximum allowable power is expected to be stated in terms of "effective
isotropic radiated power" (EIRP) which is not the same as the total radiated power, Pr. The
radiated power is the actual power radiated by the antenna: Pr=Rr l0% lo in Arms. The
allowable power can also be expressed in terms of the "effective radiated power" (ERP) which
is not the same as EIRP! It's important to understand the differences. Our interest is to
determine the allowable Pr for a given ERP or EIRP limit for the short verticals likely to be used
by amateurs on 630m.

EIRP is referenced to an "isotropic" radiator in free space. An isotropic radiator radiates
uniformly in all directions, i.e. if you measure the power density (Pdi, in W/m?) on the surface
of a hypothetical sphere surrounding an isotropic radiator you'll find Pdi is the same
everywhere. ERP is different, it is referenced to the power radiated by a A/2 dipole in free
space.
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Figure SB1 - Radiation power density at the same radius from an isotropic radiator in free
space, a A/2 dipole in free space and a short monopole over perfect ground.

Figure SB1 compares the radiation patterns of an isotropic radiator in free space, a dipole in
free space and a short vertical over ideal ground. Gi = 1 (0 dBi) is the gain of the isotropic
radiator. For the dipole the gain relative to the isotropic is Gdi= 1.648 (+2.17 dBi ). For the
short vertical over ideal ground the gain relative to the isotropic is Gvi=3 (+4.77 dBi). When
you place a short monopole over a perfect ground-plane, for the same Pr, the power density
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at the same radius will be greater by a factor of 3 (+4.77 dB) because the power is being
radiated into a hemisphere rather than a sphere because of reflection from the ideal ground
doubles Pd and there is a further increase of 1.5X (+1.77 dB) due to the directivity of the short
monopole.

The gain of the vertical when referenced to the dipole is Gvd= (4.77 dBi - 2.17 dBi) = 2.6 dBi or
a factor of 1.82. Figure SB2 shows these relationships in a flowchart format.
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From these relationships we can see that given an EIRP=5W, for a short vertical Pr=5/3=1.67W.
Given an ERP=5W, for a short vertical Pr=5/1.82=2.75W.

Calculation of power density

To determine the power density (Pd) in the wave front we can make a field strength (|Ez|)
measurement at some distance r from the antenna:

Ez|? Ez|? w
pgq = 2% |Ez [ ](1)
377 120 Lm?

Note, Ez is in V/m and 377 Q represents the impedance of free space. Implicit in equation (1)
is the assumption that the measurement of Ez has been taken far enough from the antenna to
be in the far-field where |Ez|/|Hy|= 377 Q. As shown in appendix C that condition does not

exist until you are a considerable distance from the antenna. 1000m or 1 km is often cited as
13



the desired distance for the measurement but as the discussion in appendix C shows that's
really not far enough. At 630m you need to be at least five wavelengths away or about 3km,
5km would be better.

Assuming the Pd derived from an |Ez| measurement is constant over a sphere with radius r (in
meters) you can multiply Pd by the area of the sphere to obtain EIRP:

pirp = TIE21 w
=0 Wl

The point of all this is that while we may be allowed an EIRP = 5W, the allowed Pr is about
1.7W!
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