Appendix C
Choosing a radius for the integration surface

Using E and H-field amplitudes and phases derived from NEC modeling we can
determine the distribution of the power density on a surface. By integrating the power
density over that surface we can directly determine either the radiated power (Pr) or
the power lost in the soil (Pg) which allows us to separate Pr and Pg from the input
power (Pi) which, when combined with lo, allows us to determine Rr and Rg. In free
space the radial distance from the antenna to the surface of integration doesn't matter,
Rg=0 and you'll get the same value for Rr for any distance. However, in this study we
want to include what are typically called "ground" or "soil" losses which occur inside a
given power integration surface and designate them as Rg. The power which passes
through the surface is associated with Rr. The problem is that you will accrue some
additional ground loss no matter what radius you choose initially when the radius is
increased. By convention some of these losses are considered to be "far-field" losses
which are not part of Rg. Unfortunately the fields close to the antenna have
exponentially decaying terms proportional to 1/r, 1/r, 1/r*, so the regions blend
gradually into each other without sharp distinctions. This is particularly the case for the
boundary between the reactive near-field and the Fresnel zone. While most antenna
books have at least a brief discussion of the field zones, for the most part these are
very general with limited detail.

Kraus™ suggests a near-field/Fresnel boundary at a radius of one radian (A21=0.16A)
as shown in figure C1.
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Figure C1 - Radian sphere concept from Kraus!.



Kraus™ derives his boundary radius from an analysis of a very short (L<<A) dipole with
a uniform current distribution. He gives the following equations for |Ez| and | Hp| at the
ground surface:
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Where Zo is 377Q), h is the height in wavelengths (assumed<<1), the current is
assumed be uniform along h and r is the radius from the antenna in wavelengths. The
magnitudes of A, B and C in equation (1) are compared in figure C3.
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Figure 5-6 Variation of the magnitudes of the components of E, of a short electric dipole as a
function of distance (r/4). The magnitudes of all components equal = at the radian distance 1/(2n). At
larger distances energy is mostly radiated, at smaller distances mostly stored.

Figure C2 - Kraus™™ field amplitudes.



Figure C2 predicts that |Ez| close the antenna will fall =1/r> but at larger distances |Ez]|
is asymptotic to 1/r. Notice that for r<1/21 the energy is mostly stored but for r>>1/21m
it is mostly radiated. In between the energy is some combination of the two. This
illustrates the arbitrariness in defining the boundary between the reactive near-field and
Fresnel zones. While this example is informative the current distribution assumed is
only an approximation for short LF and MF verticals and does not apply directly for
taller antennas.

There is a more general quantitative discussion of field zones around an antenna in
Constantine Balanis's book "Antenna Theory"?. The following definitions are taken
verbatim from his work. Figure C3 shows the field regions in a general way along with
expressions for the applicable radii.
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Figure C3 - Field zones (From Balanis [2])
Balanis defines the field regions as follows:

"The space surrounding an antenna is usually subdivided into three regions: (a) reactive near-
field, (b) radiating near-field (Fresnel) and (c) far-field (Fraunhofer) regions......Although no
abrupt changes in the field configurations are noted as the boundaries are crossed, there are



distinct differences among them. The boundaries separating these regions are not unique,
although various criteria have been established and are commonly used to identify the regions.

The reactive near-field region is defined as "that region of the field immediately surrounding
the antenna wherein the reactive field predominates. For most antennas, the outer boundary

of this region is commonly taken to exist at of distance R < 0.62/D3 /A from the antenna
surface, where A is the wavelength and D is the largest dimension of the antenna."”

"The Radiating near-field (Fresnel) region is defined as "that region of the field of an antenna
between the reactive near-field region and the far-field region wherein radiation fields
predominate and wherein the angular field distribution is dependent upon the distance from

the antenna. ...... The inner boundary is taken to be R = 0.62+/D3 /A and the outer boundary
distance R<2D*/A."

"The far-field (Fraunhofer) region is defined as that region of the field of an antenna where the
angular field distribution is essentially independent of the distance from the antenna. ....The
inner boundary is taken to be the radial distance R=D*/A."

When we apply these boundaries to monopoles close to ground D = twice the height of
the vertical because it includes the image. For example if h=0.25A then D=0.5\ and R;
= (0.22\ which is not greatly different from Kraus's value of 0.16A. In a footnote Balanis
adds a caveat: strictly speaking these boundary limits apply for antennas where D>A.
We are discussing antennas smaller than this so the limits become even more
approximate!

Analysis options

To determine a meaningful values for Rr and Rg we need to decide what radius to use
for the integration cylinder. Ideally we would like that to be the boundary between the
reactive near-field and Fresnel zones but the transition between the two zones is
gradual. At best any value we choose will be approximate. To guide us in the choice
of radius there are a number of things we might look at:

1) E, with distance from the base.

2) Hy with distance from the base.

3) The ratio E,/Hy which is the wave impedance Z. For a plane wave in free space
Z=20=376.8Q.



4) Variations in the calculated value for Rr at different distances from the base.
5) Total power dissipation in the soil within a given radius, i.e. variation of Rg.

In the sections which follow we will look at each of these options and in the end make a
judgment call.

E, and H, graphs

There are a couple of ways can obtain values for Ez and H¢: from a NEC model or
from theoretical equations. The way I've proceeded is to use NEC as my primary
source but check the NEC results against the equations.

Equations (1) and(2) are for very short verticals (h<<1). For h=A/4 with a sinusoidal
current distribution the equations are somewhat simpler:
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Figure C4 shows a comparison between NEC and equation (3). While there is close
agreement between the graphs for r>30', inside that distance the field values diverge.
This is an illustration of why | prefer to use NEC for the field values, at least close to
the base. The classical equations do not take into account the voltage across the
feedpoint which can be very substantial, particularly in short loaded verticals but NEC
does. This point is often overlooked in antenna texts! This becomes even more
important when analyzing verticals over real ground with actual ground systems.
Figure C5 illustrates this.
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Figure C4 - comparison of Hy at z=0 between NEC and equation (3).
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Figure C5 - Comparison of Ez for different ground systems.



Notice the differences in |Ez| close to the base. When we go from perfect ground to
real grounds the input impedance at the feedpoint increases due to the addition of the
ground loss term Rg. For the same current (lo=1Arms in this example) this will
increase the voltage across the feedpoint which increases |Ez|. It should be noted that
a comparison between NEC and the classical equations for H¢ produces identical
results, i.e. no differences. The only differences between NEC and the equations

appears to be in Ez due to the feedpoint voltage.

We can graph Ez and H¢ for a 40m A/4 vertical as shown in figures C6 and C7. lo =
1Arms and both Ez and H¢ are at the ground surface, i.e. z=0.
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Figure C6 - Ez as a function of distance radially from a A/4 vertical over perfect ground.
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Figure C7- Ho as a function of distance radially from a A/4 vertical over perfect ground.

In figure C6 we see that Ez is asymptotic to 1/r for r>20m. As shown in figure C7 the
H-field intensity decreases proportional to 1/r everywhere. In a radiation field (the far-
field) both Ez and Ho decrease as 1/r. In this example this happens at =20m or 0.48A.
It appears that in the case of a A/4 vertical setting the radius of the integration to =0.5A
(20m @ 7.2 MHz and 80m @ 1.8 MHz, etc) is reasonable. The slopes of the graphs
in figures C6 and C7 agree with the predictions of equations (3) and (4).

Figures C6 and C7 are for a 40m A/4 vertical. Ez and H¢ for a short (0.024A) top-
loaded 630m vertical behave differently with distance as shown in figures C8 and CO9.
What we see in these two graphs is good agreement with the predictions of equations
(1) and (2) and figure C2.
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Figure C8 - Ez as a function of distance radially over perfect ground.

Near the base and under the top-hat Ez decreases =1/r but once out from under the
hat the rate of decrease increases dramatically to =1/r*>. There is a corner at = 100-
120m where the rate of decrease with distance returns to 1/r. This fits the predictions in
figure C3. Hg¢ initially decreases =1/r but as we go beyond the hat H¢ begins dropping
more rapidly (=1/r"). When we again reach a distance of =120m the rate of decrease

slows to 1/r.

A rate of decrease of 1/r for both Ez and H¢ is what we would expect in the Fresnel
and far fields which are radiation fields. These graphs indicate a change from a
reactive field to a radiation field at a distance of =100m from the base of this antenna
which suggests using =100m (0.16A per Kraus) for the radius of integration.
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Figure C9 - Ho as a function of distance radially over perfect ground.

The variation of |Ez| with distance from the base shown in figures C6 and C8 are for
specific examples which appear in the QEX article. We can expand this to include a
range of antenna heights (h) as shown in figures C10 and C11. These are all simple

monopoles without top-loading.
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Figure C10 - A more general view of the variation in Ez with distance as a function of
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Figure C11 - Variation of H¢ with distance from the base.
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The graph in figure C10 was generated using equations for the E-field intensity near a
vertical. What we see is that the position of the "knee" (=A/8) is pretty much
independent of height. Beyond the knee the slope is =1/r corresponding to a radiation
field. The knee appears to be the boundary between the reactive near-field region and
the Fresnel region. In C11 the knee is not very obvious but by the time r>A/8 the
graphs are converging to a slope of 1/r.

E./H, graphs

We can graph |Ez|/|H| at ground level (z=0) as a function of distance radially from the
base. Figure C12 shows results for the 40m 0.25A vertical. For a plane wave in free
space E,/H,=Z,= 376.8Q). In figure C10 we can see that while at large distances E,/H,
approaches 377 Q there is no sharp distinction but by the time we reach 20m (=A/2) the
ratio is converging rapidly on 377Q.
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Figure C12 - Ez/Ho radially for a A/4 40m vertical over perfect ground.
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Figure C13 - Ez/H¢ for the 0.024A top-loaded 630m vertical.

A graph of E,/H, for the 630m antenna is shown in figure C13. Under the top-loading
hat which extends out =8m the Ez/H¢ impedance is very high but it quickly falls below
377 Q and then slowly rises to asymptotically approach 376.8Q). The minimum value
occurs at r=120m (=400"). Again it would appear that something is happening around
100m. However, this minimum doesn't really pin down the outer radius of the reactive
near-field very well. | think the field slopes shown in figures C8 and C9 are more
definitive.

Varying the radius of the integration cylinder

We can vary the radius of the integration cylinder to see how calculated value for Rr is
affected. Figure C14 is an example for a M4 vertical at 1.8 MHz over 0.005/13 soil,
with sixty four 19m radials. The integration radius varies from 20m to 160 m.
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Figure C14 - Effect on Rr value from varying the integration cylinder radius.

By the time the integration radius reaches 80m (=A/2) the rate of change of Rr has
begun to close in on its far-field value. Steve Stearns, K60OIK, has suggested to me
that | extend the radius for figure C14 out to very large values to demonstrate how the
value for Rr converges with a value for Rr derived from the average gain Ga. That's on
my to-do list!

Total ground loss

There is yet another way to look for indications of region boundaries and that is to look
at the total power loss in the soil within a given radius (r) without a ground system.
Using equations from Watt™® we can directly calculate the total power loss in the soil
within a given radius. Figure C15 is an example for verticals of various heights at 1.8
MHz over 0.005/13 soil. The excitation current (o) has been adjusted to provide a
constant radiated power of 37W. For H=N/4, lo=1Arms but for H=0.05A lo=tbd Arms.
The higher current in the shorter verticals results in much higher ground losses.
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Figure C15 - Total power loss within a given radius r.

For H=0.25\ the total power loss rises most rapidly for r < 0.05A but there is still a
significant increase all the way out to r=0.5A. For H=0.05A the power loss also rises
rapidly initially but then begins to flatten out for r>0.03A. Using Balanis's boundaries for
the reactive near field we get R=0.22\ for a A4 vertical and R;=0.02\ for H=0.05A.
These boundaries are in reasonable agreement with figure C13 for the point at which
the ground loss levels out.

However, we have to be a little careful. The use of a logarithmic vertical scale can be
deceiving, making the rate of change for 0.05A appear to be much less than that for
0.25A. To remedy this I've changed the scales to linear with two different vertical axes
as shown in figure C16. Both vertical axes have a range of 70W so we can compare
the rate of change of power loss as a function of radius using the dashed straight lines
on the graph. While the total power dissipation differs by over a factor of over 200, the
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rate of increase for r>0.25 is very similar, suggesting we're getting out into the radiation
field.
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Figure C16 - Expanded scale version of figure C13.
Summary

As a practical matter A/2 radials are pretty much the longest seen in practice. Radial
lengths up to 0.4-0.5 A are recognized as being into the region of vanishing returns as
far as reducing Rg is concerned. Typically, A4 radials are used with A/4 verticals and
for very short verticals the radials are usually only a little longer than the height of the
vertical but usually much more numerous.

Given all the forgoing discussion, the radius for the integration cylinder is still rather
arbitrary. For this work | chose to use a radius of A/2 for both the 1.8 and 7.2 MHz
verticals and 100m (0.16A) for the 630m vertical as reasonable compromises. While
my choices for integration cylinder radius may not provide a definitive number for Rr
they still illustrate that for a given integration radius Rr is not some fixed number but
varies with the soil characteristics, radial number and length, etc.
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