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Appendix C 

Choosing a radius for the integration surface 

Using E and H-field amplitudes and phases derived from NEC modeling we can 

determine the distribution of the power density on a surface.  By integrating the power 

density over that surface we can directly determine either the radiated power (Pr) or 

the power lost in the soil (Pg) which allows us to separate Pr and Pg from the input 

power (Pi) which, when combined with Io, allows us to determine Rr and Rg. In free 

space the radial distance from the antenna to the surface of integration doesn't matter,  

Rg=0 and you'll get the same value for Rr for any distance.  However, in this study we 

want to include what are typically called "ground" or "soil" losses which occur inside a 

given power integration surface and designate them as Rg. The power which passes 

through the surface is associated with Rr.  The problem is that you will accrue some 

additional ground loss no matter what radius you choose initially when the radius is 

increased.  By convention some of these losses are considered to be "far-field" losses 

which are not part of Rg.  Unfortunately the fields close to the antenna have 

exponentially decaying terms proportional to 1/r, 1/r2, 1/r3, so the regions blend 

gradually into each other without sharp distinctions. This is particularly the case for the 

boundary between the reactive near-field and the Fresnel zone.  While most antenna 

books have at least a brief discussion of the field zones, for the most part these are 

very general with limited detail.   

Kraus[1] suggests a near-field/Fresnel boundary at a radius of one radian (λ/2π≈0.16λ) 

as shown in figure C1. 

 

Figure C1 - Radian sphere concept from Kraus[1]. 
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Kraus[1] derives his boundary radius from an analysis of a very short (L<<λ) dipole with 

a uniform current distribution.  He gives the following equations for |Ez| and |     at the 

ground surface: 
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Where Zo is 377Ω, h is the height in wavelengths (assumed<<1), the current is 

assumed be uniform along h and r is the radius from the antenna in wavelengths.  The 

magnitudes of A, B and C in equation (1) are compared in figure C3. 

 

Figure C2 - Kraus[1] field amplitudes. 
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Figure C2 predicts that |Ez| close the antenna will fall ≈1/r3 but at larger distances |Ez| 

is asymptotic to 1/r.  Notice that for r<1/2π the energy is mostly stored but for r>>1/2π 

it is mostly radiated.  In between the energy is some combination of the two.  This 

illustrates the arbitrariness in defining the boundary between the reactive near-field and 

Fresnel zones.  While this example is informative the current distribution assumed is 

only an approximation for short LF and MF verticals and does not apply directly for 

taller antennas. 

There is a more general quantitative discussion of field zones around an antenna in 

Constantine Balanis's book "Antenna Theory"[2].  The following definitions are taken 

verbatim from his work.  Figure C3 shows the field regions in a general way along with 

expressions for the applicable radii.   

 

Figure C3 - Field zones (From Balanis [2])  

Balanis defines the field regions as follows: 

"The space surrounding an antenna is usually subdivided into three regions: (a) reactive near-

field, (b) radiating near-field (Fresnel) and (c) far-field (Fraunhofer) regions......Although no 

abrupt changes in the field configurations are noted as the boundaries are crossed, there are 
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distinct differences among them.  The boundaries separating these regions are not unique, 

although various criteria have been established and are commonly used to identify the regions.  

The reactive near-field region is defined as "that region of the field immediately surrounding 

the antenna wherein the reactive field predominates.  For most antennas, the outer boundary 

of this region is commonly taken to exist at of distance             from the antenna 

surface, where λ is the wavelength and D is the largest dimension of the antenna." 

"The Radiating near-field (Fresnel) region is defined as "that region of the field of an antenna 

between the reactive near-field region and the far-field region wherein radiation fields 

predominate and wherein the angular field distribution is dependent upon the distance from 

the antenna. ...... The inner boundary is taken to be             and the outer boundary 

distance R<2D2/λ." 

"The far-field (Fraunhofer) region is defined as that region of the field of an antenna where the 

angular field distribution is essentially independent of the distance from the antenna. ....The 

inner boundary is taken to be the radial distance R=D2/λ." 

When we apply these boundaries to monopoles close to ground D = twice the height of 

the vertical because it includes the image.  For example if h=0.25λ then D=0.5λ and R1 

≈ 0.22λ which is not greatly different from Kraus's value of 0.16λ.  In a footnote Balanis 

adds a caveat: strictly speaking these boundary limits apply for antennas where D>λ.  

We are discussing antennas smaller than this so the limits become even more 

approximate! 

Analysis options 

To determine a meaningful values for Rr and Rg we need to decide what radius to use 

for the integration cylinder.  Ideally we would like that to be the boundary between the 

reactive near-field and Fresnel zones but the transition between the two zones is 

gradual.  At best any value we choose will be approximate.  To guide us in the choice 

of radius there are a number of things we might look at: 

1) Ez with distance from the base. 

2) Hy with distance from the base. 

3) The ratio Ez/Hy which is the wave impedance Z.  For a plane wave in free space 

Z=Zo=376.8Ω. 
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4) Variations in the calculated value for Rr at different distances from the base. 

5) Total power dissipation in the soil within a given radius, i.e. variation of Rg. 

In the sections which follow we will look at each of these options and in the end make a 

judgment call. 

Ez and Hy graphs 

There are a couple of ways can obtain values for Ez and Hφ: from a NEC model or 

from theoretical equations.  The way I've proceeded is to use NEC as my primary 

source but check the NEC results against the equations.   

Equations (1) and(2) are for very short verticals (h<<1).  For h=λ/4 with a sinusoidal 

current distribution the equations are somewhat simpler: 

     
     

            
    (3) 

     
   

    
     (4) 

Figure C4 shows a comparison between NEC and equation (3).  While there is close 

agreement between the graphs for r>30', inside that distance the field values diverge.  

This is an illustration of why I prefer to use NEC for the field values, at least close to 

the base.  The classical equations do not take into account the voltage across the 

feedpoint which can be very substantial, particularly in short loaded verticals but NEC 

does.  This point is often overlooked in antenna texts!  This becomes even more 

important when  analyzing verticals over real ground with actual ground systems.  

Figure C5 illustrates this. 
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Figure C4 - comparison of Hφ at z=0 between NEC and equation (3). 

 

 

Figure C5 - Comparison of Ez for different ground systems. 
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Notice the differences in |Ez| close to the base.  When we go from perfect ground to 

real grounds the input impedance at the feedpoint increases due to the addition of the 

ground loss term Rg.  For the same current (Io=1Arms in this example) this will 

increase the voltage across the feedpoint which increases |Ez|.  It should be noted that 

a comparison between NEC and the classical equations for Hφ produces identical 

results, i.e. no differences.  The only differences between NEC and the equations 

appears to be in Ez due to the feedpoint voltage. 

We can graph Ez and Hφ for a 40m λ/4 vertical as shown in figures C6 and C7.  Io = 

1Arms and both Ez and Hφ are at the ground surface, i.e. z=0. 

 

Figure C6 - Ez as a function of distance radially from a λ/4 vertical over perfect ground. 
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Figure C7- Hφ as a function of distance radially from a λ/4 vertical over perfect ground.  

In figure C6 we see that Ez is asymptotic to 1/r for r>20m.  As shown in figure C7 the 

H-field intensity decreases proportional to 1/r everywhere.  In a radiation field (the far-

field) both Ez and Hφ decrease as 1/r.  In this example this happens at ≈20m or 0.48λ.  

It appears that in the case of a λ/4 vertical setting the radius of the integration to ≈0.5λ 

(20m @ 7.2 MHz and 80m @ 1.8 MHz, etc) is reasonable.    The slopes of the graphs 

in figures C6 and C7 agree with the predictions of equations (3) and (4). 

Figures C6 and C7 are for a 40m λ/4 vertical.  Ez and Hφ for a short (0.024λ) top-

loaded 630m vertical behave differently with distance as shown in figures C8 and C9.  

What we see in these two graphs is good agreement with the predictions of equations 

(1) and (2) and figure C2. 
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Figure C8 - Ez as a function of distance radially over perfect ground. 

Near the base and under the top-hat Ez decreases ≈1/r but once out from under the 

hat the rate of decrease increases dramatically to ≈1/r3.  There is a corner at ≈ 100-

120m where the rate of decrease with distance returns to 1/r. This fits the predictions in 

figure C3.  Hφ initially decreases ≈1/r but as we go beyond the hat Hφ begins dropping 

more rapidly (≈1/r2).  When we again reach a distance of ≈120m the rate of decrease 

slows to 1/r. 

A rate of decrease of 1/r for both Ez and Hφ is what we would expect in the Fresnel 

and far fields which are radiation fields.  These graphs indicate a change from a 

reactive field to a radiation field at a distance of ≈100m from the base of this antenna 

which suggests using ≈100m (0.16λ per Kraus) for the radius of integration.   
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Figure C9 - Hφ as a function of distance radially over perfect ground. 

The variation of |Ez| with distance from the base shown in figures C6 and C8 are for 

specific examples which appear in the QEX article.  We can expand this to include a 

range of antenna heights (h) as shown in figures C10 and C11.  These are all simple 

monopoles without top-loading.  
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Figure C10 - A more general view of the variation in Ez with distance as a function of 

H. 

 

Figure C11 - Variation of Hφ with distance from the base. 
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The graph in figure C10 was generated using equations for the E-field intensity near a 

vertical.  What we see is that the position of the "knee" (≈λ/8) is pretty much 

independent of height.  Beyond the knee the slope is ≈1/r corresponding to a radiation 

field.  The knee appears to be the boundary between the reactive near-field region and 

the Fresnel region.  In C11 the knee is not very obvious but by the time r>λ/8 the 

graphs are converging to a slope of 1/r. 

Ez/Hy graphs 

We can graph |Ez|/|Hφ| at ground level (z=0) as a function of distance radially from the 

base.  Figure C12 shows results for the 40m 0.25λ vertical.  For a plane wave in free 

space Ez/Hy=Zo= 376.8Ω.  In figure C10 we can see that while at large distances Ez/Hy 

approaches 377 Ω there is no sharp distinction but by the time we reach 20m (≈λ/2) the 

ratio is converging rapidly on 377Ω.   

 

Figure C12 - Ez/Hφ radially for a λ/4 40m vertical over perfect ground. 



13 
 

 

Figure C13 - Ez/Hφ for the 0.024λ top-loaded 630m vertical. 

A graph of Ez/Hy  for the 630m antenna  is shown in figure C13.  Under the top-loading 

hat which extends out ≈8m the Ez/Hφ impedance is very high but it quickly falls below 

377 Ω and then slowly rises to asymptotically approach 376.8Ω.  The minimum value 

occurs at r≈120m (≈400').   Again it would appear that something is happening around 

100m.  However, this minimum doesn't really pin down the outer radius of the reactive 

near-field very well.   I think the field slopes shown in figures C8 and C9 are more 

definitive. 

Varying the radius of the integration cylinder 

We can vary the radius of the integration cylinder to see how calculated value for Rr is 

affected.  Figure C14 is an example for a λ/4 vertical at 1.8 MHz over 0.005/13 soil, 

with sixty four 19m radials.  The integration radius varies from 20m to 160 m. 
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Figure C14 - Effect on Rr value from varying the integration cylinder radius. 

By the time the integration radius reaches 80m (≈λ/2) the rate of change of Rr has 

begun to close in on its far-field value.  Steve Stearns, K6OIK, has suggested to me 

that I extend the radius for figure C14 out to very large values to demonstrate how the 

value for Rr converges with a value for Rr derived from the average gain Ga.  That's on 

my to-do list! 

Total ground loss 

There is yet another way to look for indications of region boundaries and that is to look 

at the total power loss in the soil within a given radius (r) without a ground system.  

Using equations from Watt[3] we can directly calculate the total power loss in the soil 

within a given radius.  Figure C15 is an example for verticals of various heights at 1.8 

MHz over 0.005/13 soil.  The excitation current (Io) has been adjusted to provide a 

constant radiated power of 37W.  For H=λ/4, Io=1Arms but for H=0.05λ Io=tbd Arms.  

The higher current in the shorter verticals results in much higher ground losses. 
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Figure C15 - Total power loss within a given radius r. 

For H=0.25λ the total power loss rises most rapidly for r < 0.05λ but there is still a 

significant increase all the way out to r=0.5λ.  For H=0.05λ the power loss also rises 

rapidly initially but then begins to flatten out for r>0.03λ.  Using Balanis's boundaries for 

the reactive near field we get R1≈0.22λ for a λ/4 vertical and R1≈0.02λ for H=0.05λ.  

These boundaries are in reasonable agreement with figure C13 for the point at which 

the ground loss levels out. 

However, we  have to be a little careful.  The use of a logarithmic vertical scale can be 

deceiving, making the rate of change for 0.05λ appear to be much less than that for 

0.25λ.  To remedy this I've changed the scales to linear with two different vertical axes 

as shown in figure C16.  Both vertical axes have a range of 70W so we can compare 

the rate of change of power loss as a function of radius using the dashed straight lines 

on the graph.  While the total power dissipation differs by over a factor of over 200, the 
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rate of increase for r>0.25 is very similar, suggesting we're getting out into the radiation 

field. 

 

Figure C16 - Expanded scale version of figure C13. 

Summary 

As a practical matter λ/2 radials are pretty much the longest seen in practice.  Radial 

lengths up to 0.4-0.5 λ are recognized as being into the region of vanishing returns as 

far as reducing Rg is concerned.  Typically, λ/4 radials are used with λ/4 verticals and 

for very short verticals the radials are usually only a little longer than the height of the 

vertical but usually much more numerous.    

Given all the forgoing discussion, the radius for the integration cylinder is still rather 

arbitrary.  For this work I chose to use a radius of λ/2 for both the 1.8 and 7.2 MHz 

verticals and 100m (0.16λ) for the 630m vertical as reasonable compromises.  While 

my choices for integration cylinder radius may not provide a definitive number for Rr 

they still illustrate that for a given integration radius Rr is not some fixed number but 

varies with the soil characteristics, radial number and length, etc. 
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