Ground Screen Grid Dimensions

When laying down a ground screen it is necessary to know what spacing to use
between the wires, i.e. the size of the grid. Normally we want to use as large a
spacing as possible to minimize the amount of wire required. One way to go about
determining the grid spacing is to treat the ground screen and the soil under it as
parallel impedances. The idea is make the screen impedance lower than the soil
impedance so the antenna current flows in the low loss screen rather than in the soil.
There are of course practical limits to how far we can go in reducing the ground
current, so we have to decide what fraction of the total current we are willing to allow
to continue flowing in the soil.

Ground loss is I2R in nature, so if we reduce the ground current by a factor of 10,
then the ground loss will drop to 1% of what it would have been if there were no
screen at all. This is usually a reasonable compromise but of course any other ratio
could be chosen.

Figure 1 illustrates the concept.
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Figure 1
Where:

Zs = impedance of the soil
Zq = impedance of the grid or ground screen

It = total current returning to the antenna



s = current in the soil
g = current in the ground screen
What do we mean by the soil impedance? We know that the impedance of free

space is the ratio of the H-field to the E-field components in an E-M wave and is
given by:
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Where:
Ho = permeability of free space = 41 107

€0 = permittivity of free space = 8.854 x 10-12

We can extend this concept to soil by taking into account the conductivity and
permittivity:

Where:

£r = relative permeability

0 = soil conductivity in S/m

w = 2 f, where fis the frequency in Hz.

Note that Zs can be complex.



We can also state the equivalent impedance for the grid:
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Where:
d = spacing of grid wires in meters
a = radius of grid wires in meters

Note, for the d/a term it is only necessary that d and a have the same units, they can
be in inches for example, however, the multiplying d must be in meters. Also notice
that the form for equation 3 is very similar to the expression for the surge impedance
of a two-wire open transmission line.

Now let's see what Zs is for average ground at 1.83 MHz. Plugging &= 15and o =

0.005 S/m into equation 2 we will get: Zs= 42.2+j31.28 Ohms, |Zs| = 52.6 Ohms. If
the ground screen is made up from #12 wire spaced 24", we will find that Zy = j6.41
Ohms and |Zg| = 6.41 Ohms.
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We see that for this ground characteristic and frequency, 24" spacing in the grid
reduces the ground loss to about 1% of what it would have been without the screen.

Using the above equations, this procedure can be applied for any soil, frequency,
wire size, residual percentage of current in soil, etc.

Above equations can be found in many sources. | used:

Frank Abbott, Design of Optimum Buried-Conductor RF Ground System, IRE
proceedings, July 1952, pp. 846-852.

You don't have to restrict these equations to rectangular grid ground systems. If you
have a conventional radial ground system and a single vertical, the H-field take the
form of concentric circles intersecting the radials at right angles. This is the optimum



angle to induce the maximum current in the radial so you have no need to putin
cross-wires to form a grid. The cross-wires buy you nothing in this case. If you have
a 60 radial system, the angle between radials is 6°. At a radius of 19.1' the spacing
between the wires will be 2' and the ground loss within that radius will be <1.3% as
calculated earlier. At a radius of 130", the spacing between the wires is 13.6' and Zg
= j62 Ohm. Redoing the earlier calculation with Z4 = |62 we get that the |Is| = 0.606
|Ir| and the loss at that radius is about 37% of what it would be without the radial
system. The radial system is still doing its job.

In the case where the H-field is not at 90° to the wire, then the current induced in the
wire will be reduced by the cosine of the angle between the field and the wire. If you
are using a rectilinear grid then you can always reduce the field to two components,
each one of which is perpendicular to a wire. This situation can arise in multi-
element arrays where the field at any given point is the vector sum of the fields from
the individual elements.



