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Radiation and Ground Loss 
Resistances In LF, MF and 

HF Verticals: Part 1
With the impending FCC announcement about the release of a new LF 
and a new MF band, hams will be interested in practical antennas and 

learning how to calculate EIRP to legally operate on those bands.

Unlike the higher bands, where the 
maximum transmitting power limit is stated 
in terms of transmitter output power, on the 
(soon to be released) 630 m (472 to 479 kHz) 
and 2200 m (135.7 to 137.8 kHz) bands, 
the maximum allowable power is stated 
in terms of the effective isotropic radiated 
power (EIRP) from the antenna. On 630 m 
the maximum EIRP allowed is 5 W, which 
for the short verticals likely to be used at 
475 kHz, translates to a radiated power (Pr) 
of 1.7 W. (For more information on EIRP, 
see the sidebar.) 

This raises the question, “How do we 
determine Pr?” As shown in the sidebar, the 
standard professional approach has been to 
measure the field strength at a point some 
distance from the antenna and then calculate 
EIRP. That’s fine for the pros, but for most 
amateurs, that method won’t be practical. 
There are other ways we might go about it, 
however. For example, if we can measure the 
current at the feed point (Io) and if we know 
the radiation resistance (Rr) referenced to the 
feed point, we can find the radiated power 
from Equation 1.

Pr = Io
2 × Rr	 [Eq 1]

An alternative would be to measure the 
feed point resistance (Ri) and the input power 
(Pi) and then calculate Pr using Equation 2.

Pr = (Rr / Ri) × Pi	 [Eq 2]

We can measure quantities like Io, Pi, and 
Ri, but there is no way to measure Rr directly.

Feed Point Equivalent Circuit Model
Figure 1 shows the traditional equivalent 

circuit used to represent the resistive part of 
an antenna’s feed point impedance (Ri) when 
describing what happens to the input power, 
Pi. The radiation resistance, Rr, represents 
the radiated power. 

Pr = Io
2 × Rr	 [Eq 3] 

where: 
Io is the current at the feed point in rms 
amperes. 

The power lost in the soil close to the 
antenna is represented as Rg. The sum of 
other ohmic losses such as conductor loss, 
insulator leakage, and so on is represented as 
RL. The input resistance at the feed point is 
assumed to be the sum of these resistances. 

Ri = Rr + Rg + RL	 [Eq 4]

Dete rmin ing  P L i s  r easonab ly 
straightforward, but Pg is trickier. In the 
following discussion I will be ignoring RL. 
In other words, we will assume lossless 
conductors. This is not because these 
losses are unimportant but the interest here 
is in Rr and Rg, and how they vary with 
frequency, ground system design and soil 
characteristics. PL is certainly a worthy 
subject, but we will save that for another day.

The traditional assumption has been that 
Rr for a vertical over real ground is the same 
as it would be for the same antenna over 
perfect ground. The value we measure for Ri 

Figure 1 — This is a typical equivalent circuit 
for an antenna feed point resistance.

is assumed to be the sum of the Rr for perfect 
ground and additional loss terms that result 
from ground and other loss elements. I’ve 
certainly gone along with the conventional 
thinking, but over the years I’ve become 
skeptical after seeing experimental and 
modeling results and calculations that didn’t 
fit. I’ve come to the conclusion that at HF at 
least, Rr for a given vertical over real soil, is 
not the same value for the same antenna over 
perfect ground. 

The following discussion focuses on 
the concept illustrated in Figure 1, with 
RL = 0. The discussion will show that at 
HF (1.8 MHz and higher frequencies), Rr 
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1Notes appear on page 34.

differs significantly from the value over ideal 
ground. At LF (137 kHz) and MF (472 to 
479 kHz), however, the variation of Rr from 
the ideal value is much smaller, which is very 
helpful for determining Pr.

To make this article easier to read I’ve 
placed almost all the mathematics and the 
many supporting technical details in an 
extensive set of Appendices. 

Appendix A — Shows how to calculate 
Rr using the Poynting vector.

Appendix B — Gives a review of soil 
characteristics.

Appendix C — Describes the E and H 
fields and power integration.

A p p e n d i x  D  —  C ove r s  o t h e r 
miscellaneous bits.

Pushing material into appendices makes 
life much easier for the casual reader, but 
provides the gory details for those who want 
them. These appendices are available on my 
web site: www.antennasbyn6lf.com and are 
also available for download from the ARRL 
QEX files web page. Go to www.arrl.org/
qexfiles and look for the file 7x15_Severns.
zip.1 

Rr For A Lossless Antenna
We need to be careful with our use of the 

term “radiation resistance.” A definition of 
Rr associated with a lossless antenna in free 
space, can be found in almost any antenna 
book. A typical example is given in Radio 
Engineers’ Handbook by Frederick Terman:2

“The radiation resistance referred to a 
certain point in an antenna system is the 
resistance which, inserted at that point 
with the assumed current Io flowing, would 
dissipate the same energy as is actually 
radiated from the antenna system. Thus:

2

radiated powerRadiation resistance 
oI

=

Although this radiation resistance is a 
purely fictitious quantity, the antenna acts 
as though such a resistance were present, 
because the loss of energy by radiation 
is equivalent to a like amount of energy 
dissipated in a resistance. It is necessary 
in defining radiation resistance to refer it 
to some particular point in the antenna 
system, since the resistance must be such 
that the square of the current times radiation 
resistance will equal the radiated power, and 
the current will be different at different points 
in the antenna. This point of reference is 
ordinarily taken as a current loop, although 
in the case of a vertical antenna with the 
lower end grounded, the grounded end is 
often used as a reference point.”

Discussions of Rr for the lossless case 

are common but I’ve not seen a discussion 
of Rr where the effect of near-field losses are 
considered. In his book, Antennas, Kraus 
does tease us with a comment:3

“The radiation resistance Rr is not 
associated with any resistance in the antenna 
proper but is a resistance coupled from the 
antenna and its environment to the antenna 
terminals.”

The bold type is mine! The implication 

that the environment around the antenna 
plays a role is important but unfortunately 
Kraus does not seem to have expanded on 
this observation.

Calculation of Rr and Rg

As pointed out earlier if you know Io and 
Pr, you can calculate Rr. A standard way to 
calculate the total radiated power is to sum 

EIRP and Radiated Power, Pr, From Verticals
On 630 m the maximum allowable power is stated in terms of effective 

isotropic radiated power (EIRP), which is not the same as the radiated power (Pr 
= Rr × Io2, where Io is the rms current). It is important to understand the difference. 
As shown in Figure SB1, an isotropic radiator is one that radiates uniformly in all 
directions. The power density, Pdi, is the same in all directions at a given radius. 
If you place a short monopole over a perfect ground plane, for the same Pr, the 
power density at the same radius will be greater by a factor of 3 (+4.77 dB). The 
factor of 3 occurs because the power density is doubled (+3 dB) by going from 
free space to the perfect ground plane, and there is a further increase of 1.5 × 
(+1.77 dB) because of the directivity of the short monopole.

To achieve the same Pd at the same radius, if we excite the isotropic antenna 
with Pr = 5 W, we can only excite the monopole with Pr = 1.7 W. 

To determine the power density (Pd) in the wave front, we can make a field 
strength (|Ez|) measurement at some distance r from the antenna.
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                                                              [Eq SB1]

Note, Ez is in V/m and 377 W represents the impedance of free space. Implicit 
in Equation SB1 is the assumption that the measurement of Ez has been taken far 
enough from the antenna to be in the far field, where |Ez| / |Hy| ≈ 377 W. At 630 m, 
you need to be at least 5 l away, or about 3 km, and 5 km would be better. 

Assuming Pd is constant over a sphere with radius r (in meters) you can 
multiply Pd by the area of the sphere to obtain EIRP.
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EIRP W=                                                                         [Eq SB2]

The point is that while we are allowed an EIRP = 5 W, the allowed Pr is about 
1.7 W!

QX1507-SevernsSB1

5 W
Short Monopole

5 W
Isotropic

1.7 W
Short Monopole

Pdi 3 Pdi

Figure SB1 — Radiation power density at the same radius from an isotropic 
radiator in free space and a short monopole over perfect ground. 
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(integrate) the power density (in W/m2) over 
a hypothetical closed surface surrounding the 
antenna. For lossless free space calculations 
the enclosing surface can be anywhere from 
right at the surface of the antenna to a sphere 
with a very large radius (large in terms of 
wavelengths). For Pr calculations, a large 
radius has the advantage of reducing the 
field equations to their far-field form, which 
greatly simplifies the math. This is fine for 
lossless free space or over perfect ground, 
where near-field or far-field values give the 
same answer. When we add a lossy ground 
surface in close proximity to the antenna, 
however, things get more complicated. Note 
that the terms near-field, Fresnel, and far-
field are carefully defined in Appendix C. 

Take for example a vertical ½   l dipole 
with the bottom a short distance above lossy 
soil. You could create a closed surface that 
surrounds the antenna but does not intersect 
ground, and then calculate the net power 
flow through that surface. When you do this 
you find the Ri provided by EZNEC (my 
primary modeling software) will be the same 
as the Rr calculated from the power passing 
through the surface. Technically, this is Rr by 
the free space definition, since the antenna is 
lossless, as is the space within the enclosing 
surface, but that’s not how we usually think 
of the relationship between Ri and Rr. The 
conventional point of view is that the near-
field of the antenna induces losses in the soil, 
which we assign to Rg, separate from Rr, as 
indicated in Figure 1. The power absorbed 
in the soil near the antenna is not considered 
to be “radiated” power although clearly it 
is being supplied from the antenna. When 
we run a model on NEC or make a direct 
measurement of the feed point impedance of 
an actual antenna, we get a value for Ri from 
Equation 5.

Ri = Rr + Rg	 [Eq 5]

Can we separate Rr from Rg, and if so, 
how? Assuming we’re going to use NEC 
modeling, we could simply use the average 
gain calculation (Ga). The problem with Ga 
is that it includes all the ground losses, near 
and far-field, ground wave, reflections, and 
so on. For verticals, Ga gives a realistic, if 
depressing estimate of the power radiated for 
sky wave communications, but the far-field 
loss is not usually included in Rg. Typically, 
Rg represents only the losses due to the 
reactive near-field interaction with the soil. 
In the case of a ¼ l ground based vertical for 
example, that would be the ground losses out 
to ≈ ½ l (see Appendix C). Instead of using 
Ga we can have NEC give us the amplitudes 
and phases of the E and H fields on the 
surface of a cylinder, which intersects the 
ground surface as indicated in Figure 2.

The power density is integrated over the 

surface of the cylinder (Px) and over the 
surface of the disc (Pz) that forms the top of 
the cylinder, giving us Pr directly. Instead of 
integrating the power over the surface of the 
cylinder we could sum the power passing 
through the soil interface at the bottom of the 
cylinder, which gives Pg directly. From either 
Pr or Pg we can calculate Rr using Equation 6.
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= = 	 [Eq 6]

Of course this is more complicated than 
simply using Ga! It turns out, however, that 
if you’re moderately clever in your choice 
of surface and field components, it can be 
quite practical to calculate the values using 
a spreadsheet like Microsoft EXCEL. The 
mathematical details are in Appendix A. 
Because the fields near a vertical are sums 
of decaying exponentials (1/r, 1/r2, 1/r3) the 
boundaries between the field regions are not 
sharply defined, the choice for the cylinder 
or disc radius (r) is somewhat arbitrary. 
The rather messy details of the choice of 
integration surface radius are discussed in 
Appendix C. 

Rr and Rg for a ½ l Vertical Dipole
For simplicity, I began this study using a 

resonant vertical ½ l dipole like that shown 
in Figure 3, with the bottom of the antenna 
placed 1 m above ground. The analysis was 
done at several frequencies, two of which 
are reported here — 475 kHz and 7.2 MHz. 
Note the frequencies are a factor of ≈ 16× 
apart. In a later section, I give an example 
at 1.8 MHz. The antennas heights (h) were 
adjusted for resonance over perfect ground 
and that height was retained for modeling 

over real soil. 
Figures 4 and 5 show the variation in Ri 

at 7.2 MHz and 475 kHz for a wide range 
of soil conductivity (s) and permittivity (er, 
relative dielectric constant). The notation “J 
=” on the Figures indicates the height of the 
bottom of the antenna above ground. 

As we would expect, in free space 
Rr ≈ 72  W and over perfect ground Rr ≈ 
95 – 100 W for these antennas. Over real 
ground Ri varies dramatically with both soil 
characteristics and frequency. One point is 
obvious: 

Ri is not a combination of Rr over perfect 
ground and some Rg!

On 40 m, values for Ri over real soils are 
all lower than the perfect ground case, but the 
values on 630 m vary from well below the 
perfect ground case to slightly above. In both 
cases, as ground conductivity increases, Ri 
converges on the perfect ground case as one 
would expect. For very low conductivities, 
we can see that er has a profound influence 
on Ri, but its effect is greatly reduced for high 
conductivities. Note that at 475 kHz for s 
≧ 0.0001 S/m, Ri rapidly converges on the 
perfect ground value, and the effect of er is 
minimal. On the other hand, at 40 m the jump 
in Ri doesn’t occur until s ≧ 0.003 S/m, that’s 
more than an order of magnitude higher than 
475 kHz. It would appear that at 475 kHz 
the value for er doesn’t matter much over 
most common soils, but at 7.2 MHz it has a 
major influence for some typical values of s. 
What’s going on here?

Soil Characteristics
It is important to understand that the 

characteristics of a given soil will vary with 
frequency. The following is a brief overview. 
You can find a much more detailed discussion 
in Appendix B. Figures 6 and 7 are examples 
of s and er for a typical soil over a frequency 
range from 100 Hz to 100 MHz. These graphs 
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Figure 2 — We can use NEC modeling to 
calculate the E and H fields on a cylindrical 

surface enclosing a ground mounted 
vertical.
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Figure 3 — This model shows a ½ l vertical 
dipole, with the bottom of the antenna 1 m 

above ground.
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Figure 4 — Here is a graph of Ri versus ground conductivity for a ½ l vertical dipole at 
7.2 MHz.

Figure 5 — This graph shows Ri versus ground conductivity for a ½ l vertical dipole at 
475 kHz.
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were generated using data excerpted from 
Antennas in Matter by King and Smith.5 In 
this example, at 100 Hz s ≈ 0.09 S/m and 
that value is relatively constant up to 1 MHz, 
beyond which s increases rapidly. The 
behavior of the relative dielectric constant 
(er) is just the opposite, decreasing with 
frequency until about 10  MHz and then 
leveling out. We can combine s and er by 
using the loss tangent (D).

tan
2

e

e

D
f

s
δ

π e
= = 	 [Eq 7]

 
where: 
e e = eo e er = effective permittivity 
or dielectric constant (in farads/m)  
eo = permittivity of a vacuum = 8.854 × 10–12 
farads/m.

For a good insulator, D<<1 and for a 
good conductor, D>>1. For most soils at HF 
0.1<D<10, but it is often close to 1.

We can combine the data in Figures 6 and 
7 into a graph for D, as shown in Figure 8.

Figure 8 shows that something interesting 
happens when we go from HF down to MF. 
At HF, D is usually not far from 1, but at 
MF, D is usually much higher. This implies 
that the soil characteristics are dominated 
by conductivity. Figures 4 and 5 show that 
at MF, conductivity becomes the dominant 
influence at much lower conductivities than 
at HF. This explains some of the features of 
Figures 4 and 5.

Relationships Between D, Rr and Rg

The role of the loss tangent, D, is worth 
exploring a bit further. Figure 4 showed the 
variation in Ri as er and conductivity were 
varied. In a similar way we can examine the 
variation in Rr and Rg over the same range 
of variables as shown in Figure 9, which is 
a graph of Ri, Rr, and Rg with er = 10 for the 
40 m ½ l vertical. On the chart there is a 
vertical dashed line corresponding to values 
of s where D = 1 for er = 10 (s ≈ 0.004 S/m 
in this example). Something interesting 
happens in the region around the point where 
the loss tangent equals one. 

A very prominent feature of Figure 9 
is that Rr and Rg are not constant as we 
vary s. The value for Rg (which represents 
ground loss) peaks near D = 1, which is what 
dielectric theory predicts for the maximum 
dissipation point. We can take one further 
step with the data in Figure 9, and graph the 
ratio Rr / Ri (which is the radiation efficiency) 
as shown in Figure 10. The minimum 
efficiency (≈0.66) occurs at σ ≈ 0.0025 S/m.

This graph emphasizes the effect of the 
loss tangent on ground loss.
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Figure 8 — Here is a graph of the loss tangent associated with the soil in Figures 6 and 7.

Figure 7 — This graph shows soil permittivity variation with frequency.
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Figure 10 — Here we see the variation of radiation efficiency with er = 10.
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